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Abstract⎯The convexity assumptions for a minimax fractional programming problem of  variational type are relaxed to 
those of  a type I and related functions. Sufficient optimality conditions are established under the aforesaid assumptions. 
Several duality theorems are obtained for Wolfe type and Mond-Weir type duals and the original problem. 
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1. INTRODUCTION 

The problem considered in this paper consists of  minimizing a maximum of  several time-dependent ratio involving 
integral expressions. It is well known that fractional programming problems has benefited from advances in generalized 
convexity and vice-versa (see, Frenk and Schaible (2005) and references therein and Stancu-Minasian (1997)). Many authors 
have studied variational problems (see, Bector et al. (1992), Bector and Husain (1992), Craven (1993), Gregory and Lin 
(1996), Hanson (1964), Kim and Kim (2002), Kim and Lee (1998), Lai and Liu (2003), Liu (1994), Mishra (1996), Mishra 
and Mukherjee (1994a, 1994b, 1995), Mond and Hanson (1967), Mond et al. (1988), Mond and Husain (1989), Mond and 
Smart (1989), Mukherjee and Mishra (1994, 1995), Nahak and Nanda (1996, 1997), Valentine (1937), Ye and Zheng (1991) 
and Zalmai (1990)). 

Consider a minimax problem with a fractional objective in the form: 
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subject to ( ) ( ) ( ), , , ,α β=∈ =nx PS T R x a x b  

( ) ( )( ), , 0,≤∫ &
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h t x t x t dtja
 { } [ ]1,..., , ,∈ ≡ ∈ =j m m t T a b , 

where the functions , , ∈f g i pi i  and , ∈h j mj  are continuous in , andt x x and have continuous partial derivatives 

with respect to andx x& and where ( ), nPS T R  is the space of  all piecewise smooth state functions x defined on the 

compact time set T  in .R  The norm of  ( ),∈ nx PS T R  is defined by ,= +∞ ∞x x Dx where D  is the 

differential operator on ( ), nPS T R  defined by 

( ) ( ) ,α= ⇔ = + ∫
t

u Dx x t u s ds
a
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whichα  is a given boundary value. Therefore, =
d

D
dt

except at discontinuities. 

Throughout the paper we assume that 

( ) ( )( ) ( ) ( )( ), , 0, , , 0> ≥∫ ∫& &
b b

g t x t x t dt f t x t x t dti ia a
 for each i p∈  and any ∈ℑx P , the set of  all feasible 

solutions of  (P). For simplicity, we write ( ) =x t x  and ( ) =& &x t x . 
In order to obtain necessary and sufficient optimality conditions for problem (P), Bector et al. (1992) considered an 

equivalent parametric problem for v R∈  in the following form: 

( )EPv  minimize q  

subject to ( ) ( ) ( ), , , ,α β=∈ =nx PS T R x a x b  

( ) ( ), , , , ,− ≤∫ ⎡ ⎤⎣ ⎦& &
b

f t x x vg t x x dt qi ia
 

( ), , 0 , for and ,
b

h t x x dt i p j mja
≤ ∈ ∈∫ &  

and they established the following useful result: 

Lemma 1. [Bector et al. (1992)]. The function *x  is an optimal solution for (P) with optimal value *v  if  and only if  

the triplet ( )* * *, ,x v q  is an optimal solution of  ( )EPv  with optimal value * 0.q =  That is, 

( )
( )

* *, ,
*

* *, ,
=
∫

∫

&

&

b
f t x x dtiav b
g t x x dtia

. 

Recently, Lai and Liu (2003) considered the problem (P) and established the optimality results for the problem (P) and 
some duality results for (P) and its three different duals under the invexity (see, Hanson (1981)) and generalized invexity 
assumptions on the functionals involved in the problem. 

In this paper, we will establish optimality conditions and duality theorems under the assumptions of  type I and related 
functions in the problem (P). This will extend some results of  Lai and Liu (2003) to a wider class of  functions. Moreover, 
several results established in the literature are a particular case of  the results obtained in this paper. 

 
2. NOTATIONS AND PRELIMINARIES 

For ( ), ,∈ nx PS T R we let ( ) ( ), , ,= ∫ &
b

F x f t x x dti ia
( ) ( ), ,= ∫ &

b
G x g t x x dti ia

 and ( ) ( ), , ,= ∫ &
b

H x h t x x dtj ja
 for 

i p∈  and .j m∈  Since the functions , ,f g i pi i ∈  and ,h j mj ∈  are continuous in , andt x x& and have 

continuous partial derivatives with respect to andx x& then the functionals ( ),..., ,1=F F Fp ( ),...,1=G G Gp and 

( ),...,1H H Hm= are (Frechet) differentiable on ( ), nPS T R . It follows that the problem (P) may be written in the form: 

(P) 
( )

( )
( )

min max
,

F xi
n i px PS T R G xi∈∈

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

subject to ( ) ( ) ( ), and 0.x a x b H xα β= = ≤  

Here α  and β  are fixed vectors in nR . The equivalent parametric minimization problem ( )EPv  is then given by 

( )EPv  minimize q  

subject to ( ) ( ) , ,F x vG x q i pi i− ≤ ∈  ( ) 0,H x j mj ≤ ∈  

( ), nx PS T R∈  with fixed boundary conditions ( )x a α=  and ( )x b β= . 

As in [11], One can show that if  x P∈ℑ , a feasible solution for (P), then 
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( ) ( )
( )
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y F xF xix
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                                     (1) 

where e  is a vector of  ones in pR+  and ,⋅ ⋅  denotes the inner product in pR . For convenience, now on we set 

{ }: , 1 .pI y R y e= ∈ =+  

For simplicity, for ( ), , pnx PS T R y R∈ ∈ +  and mz R∈ +  we denote 

( ) ( ) ( ), , , , ,
1

pb
x y y F x y f t x x dti iia

Φ = = ∑∫
=

&  

( ) ( ) ( ), , , , ,
1

Ψ = = ∑∫
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&
pb

x y y G x y g t x x dti iia
 

( ) ( ) ( ), , , , .
1

b m
x z z H x z h t x x dtj jja

Ω = = ∑∫
=

&  

Clearly, ( ), ,xΦ ⋅ ( ),xΨ ⋅  and ( ),xΩ ⋅  are linear functionals. 

From Eq.(1), if  *x  is an optimal solution for (P), then 

( ) ( )
( )

( )
( )

( )( )
( )( )

( )
( )

( )
( )

* ** * ˆ,,* max max* * * *, ˆ,

* *,,
min max ,* *, ,

x y xF x x yi
x

i p y IG x x y x y xi

x yx y
x y I x y x y

ϕ
ΦΦ

= = =
∈ ∈ Ψ Ψ

ΦΦ
= =

∈ Ψ Ψ

                       (2) 

where ( )* *ˆ .y x y=  

Problem (P) is equivalent to 
( )
( )

,
min max

,

x y
x y x y

Φ

Ψ
 subject to ( ) 0, and .nH x x R y I≤ ∈ ∈  

Theorem 1. [Craven (1988)] (Necessary conditions). If  *x  is an optimal solution of  (P), then there exist *y I∈  and 

multipliers *v R∈  and * mz R∈ +  such that ( )* * * *, , ,x v y z  satisfies 

( ) ( ) ( )' * * * ' * * ' * *, , , 0,x y v x y x zΦ − Ψ + Ω =                                   (3) 

( ) ( )* * * * *, , 0,x y v x yΦ − Ψ =                                                                     (4) 

( )* *, 0,x zΩ =                                                       (5) 

where 'Φ  and 'Ψ  are the gradients of  Φ  and Ψ  at ( )* *,x y  respectively and ( ) ( )' * * *, , .=Ω ∇x z z H x  

We can replace *v  by 
( )
( )

* *,

* *,

x y

x y

Φ

Ψ
 using (4) and then restate Theorem 1 as follows: 

Theorem 2. (Necessary Condition). If  *x  is an optimal solution of  (P), then there exist * ∈y I  and multipliers *v R∈  

and * mz R∈ +  such that ( )* * *, ,x y z  satisfies 

( ) ( ) ( ) ( ) ( ) ( )* * ' * * * * ' * * * * ' * *, , , , , , 0,x y x y x y x y x y x zΨ Φ −Φ Ψ + Ψ Ω =                             (6) 

( )* *, 0,x zΩ =                                                       (7) 
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and obtain the optimal value by 

( ) ( )
( )

( )
( )

( )
( )

* * *, ,* max min max .* * * 1, ,

x y x y F xix
xy I i p G xx y x y i

ϕ
Φ Φ

= = =
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3. TYPE I AND RELATED FUNCTIONS 

Let ( ),∈ nx PS T R  and ( )1 n nf C T R R∈ × ×  define a functional ( ): , nJ PS T R R→  by 

( ) ( ), , .
b

J x f t x x dt
a

= ∫ &  

We assume that the boundary points ( )x a  and ( )x b  are fixed. Consider the admissible vectors +x w  with 

admissible variations [ ]( ), , nw C a b R∈  vanishing at the boundary points. Then the differential of  J  is a linear 

functional on [ ]( ), , ,nC a b R  

( ) ( )' , ,
0

bd
J x f t x w x w dt

ad
α α

α α
= + +∫

=
& &  

( ) ( ) ( ) ( ), , , ,
b

f t x x w t f t x x w t dtx xa
= +∫ ⎡ ⎤⎣ ⎦& & &&  

( ) ( ) ( ) ( ) ( ), , , , , ,
bb

f t x x Df t x x w t dt f t x x w tx x xa a
= − +∫ ⎡ ⎤⎣ ⎦& & && &  

( ) ( ) ( ), , , , .
b

f t x x Df t x x w t dtx xa
= −∫ ⎡ ⎤⎣ ⎦& &&  

That is,  

( ) ( ) ( ) ( )' , , , ,
b

J x w f t x x Df t x x w t dtx xa
= −∫ ⎡ ⎤⎣ ⎦& && ,        

for all [ ]( ) ( ) ( ), , , 0 ,nw C a b R w a w b∈ = = where .D d dt=  

Define a function ( ) ( ) ( ): , , ,n n nPS T R PS T R C T Rη × →  with condition ( ), 0 if .x u x uη = =  

We now give the following definition: 

Definition 1. The problem (P) is said to be type I with respect to η  at *x P∈ℑ  if  for all x P∈ℑ , we have 

( ) ( ) ( ) ( )* * * ' * * *, , , , ,x y x y x y x xI ηΦ −Φ ≥ Φ  

( ) ( )( ) ( ) ( )* * * ' * * *, , , , ,x y x y x y x xI η− Ψ −Ψ ≥ −Ψ  

( ) ( ) ( )* * ' * * *, , , ,η−Ω ≥ Ωx z x z x xI  

where for each *y  and *z , '
IΦ , '

IΨ  and '
IΩ  are partial Frechet derivatives of  ( )*, yΦ ⋅ , ( )*, y−Ψ ⋅  and 

( )*, z⋅Ω  at *y , respectively. 

Definition 2. The problem (P) is said to be pseudo-quasi type I with respect to η  at *x P∈ℑ  if  for all x P∈ℑ , we have 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )* * * * * * * * * * * * * *, , , , 0 , , , ,x y x y x y x y x y x y x y x yΨ Φ −Ψ Φ < = Ψ Φ −Ψ Φ  

( ) ( ) ( ) ( )( ) ( )* * ' * * * ' * * *, , , , , 0 ,x y x y x y x y x xI I η⇒ Ψ Φ −Φ Ψ <    

( ) ( ) ( )* * ' * * *, 0 , , 0,x z x z x xI η−Ω ≤ ⇒ Ω ≤  

where for each *y  and *z , '
IΦ , '

IΨ  and '
IΩ  are partial Frechet derivatives of  ( )*, yΦ ⋅ , ( )*, y−Ψ ⋅  and 
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( )*, z⋅Ω  at *y , respectively.  

Definition 3. The problem (P) is said to be quasi-strictly-pseudo type I with respect to η  at *x P∈ℑ  if  for all x P∈ℑ , we 

have 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )* * * * * * * * * * * * * *, , , , 0 , , , ,x y x y x y x y x y x y x y x yΨ Φ −Ψ Φ ≤ = Ψ Φ −Ψ Φ  

( ) ( ) ( ) ( )( ) ( )* * ' * * * ' * * *, , , , , 0 ,x y x y x y x y x xI I η⇒ Ψ Φ −Φ Ψ ≤    

( ) ( ) ( )' * * * * *, , 0 , 0,x z x x x zI ηΩ > ⇒ −Ω >  

where for each *y  and *z , '
IΦ , '

IΨ  and '
IΩ  are partial Frechet derivatives of  ( )*, yΦ ⋅ , ( )*, y−Ψ ⋅  and 

( )*, z⋅Ω  at *x , respectively.  
Now we establish sufficient optimality conditions for (P) under certain assumptions on the problem (P). 

Theorem 3. (Sufficient optimality conditions). Let * * *, , mx y I z RP∈ℑ ∈ ∈ +  and ( )* * *, ,x y z  satisfy Eq.(6)-Eq.(8). 

If, for the given *y  and *z  the problem (P) is type I with respect to .η  Then *x  is an optimal solution for (P). 

Proof. If  *x  is not an optimal solution for (P), then there is a feasible solution u P∈ℑ  such that 

( ) ( )* .x uϕ ϕ>                                                       (9) 

By Eq.(1) and Eq.(2), we have 

( )
( ) ( ) ( ) ( )

( )
( )
( )

* * *, ,,* *max , .* * *,, ,

x y u yu y
x u y I

y I u yx y u y
ϕ ϕ

Φ ΦΦ
= > = ≥ ∈

∈ ΨΨ Ψ
 

It follows that 

( ) ( ) ( ) ( )* * * * * *, , , , 0.u y x y x y u yΦ Ψ −Φ Ψ <                                 (10) 

For * *, my I z R∈ ∈ +  employing the type I condition of  the problem, we get 

( ) ( ) ( ) ( )* * * ' * * *, , , , ,u y x y x y u xI ηΦ −Φ ≥ Φ                                 (11) 

( ) ( )( ) ( ) ( )* * * ' * * *, , , , ,u y x y x y u xI η− Ψ −Ψ ≥ −Ψ                                (12) 

( ) ( ) ( )* * ' * * *, , , .x z x z u xI η−Ω ≥ Ω                                          (13) 

Here for each *y  and *z , '
IΦ , '

IΨ  and '
IΩ  are partial Frechet derivatives of  ( )*, yΦ ⋅ , ( )*, y−Ψ ⋅  and 

( )*, z⋅Ω  at *x , respectively. Since ( )* *, 0x yΨ >  and ( )* *, 0,x yΦ ≥  we multiply (11) by ( )* *,x yΨ , Eq.(12) 

by ( )* *, .x yΦ  Adding up the resulting inequalities and using Eq.(10), we get 

( ) ( ) ( ) ( )( ) ( )* * ' * * * * ' * * *, , , , , 0x y x y x y x y u xI I ηΨ Φ −Φ Ψ < .                              (14) 

From Eq.(7), Eq.(13) and ( )* *, 0x yΨ > , we get 

( ) ( ) ( )* * ' * * *, , , 0.ηΨ Ω ≤x y x z u zI                                      (15) 

From Eq.(14) and Eq.(15) we get a contradiction to Eq.(6). Hence Eq.(9) does not hold, and so *x  must be optimal for 
(P).� 

Theorem 4. (Sufficient optimality conditions). Let * * *, , mx y I z RP∈ℑ ∈ ∈ +  and ( )* * *, ,x y z  satisfy Eq.(6)-Eq.(8). 

If, for the given *y  and *z  the problem (P) is pseudo-quasi type I with respect to .η  Then *x  is an optimal solution 
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for (P). 

Proof. If  *x  is not an optimal solution for (P), then there is a feasible solution u P∈ℑ  such that 

( ) ( )* .x uϕ ϕ>                                                      (16) 

By Eq.(1) and Eq.(2), we have 

( )
( ) ( ) ( ) ( )

( )
( )
( )

* * *, ,,* *max , .* * *,, ,

x y u yu y
x u y I

y I u yx y u y
ϕ ϕ

Φ ΦΦ
= > = ≥ ∈

∈ ΨΨ Ψ
 

It follows that 

( ) ( ) ( ) ( )* * * * * *, , , , 0.u y x y x y u yΦ Ψ −Φ Ψ <                                 (17) 

Note that  

( ) ( ) ( ) ( )* * * * * * * *, , , , 0.x y x y x y x yΦ Ψ −Φ Ψ =                                 (18) 

For * *, my I z R∈ ∈ +  employing the pseudo-quasi type I condition of  the problem and using Eq.(7), Eq.(17) and 
Eq.(18), we get 

( ) ( ) ( ) ( )( ) ( )* * ' * * * ' * * *, , , , , 0 ,x y x y x y x y x xI I ηΨ Φ −Φ Ψ <                              (19) 

( ) ( )' * * *, , 0,x z x xI ηΩ ≤                                                           (20) 

Here for each *y  and *z , '
IΦ , '

IΨ  and '
IΩ  are partial Frechet derivatives of  ( )*, yΦ ⋅ , ( )*, y−Ψ ⋅  and 

( )*, z⋅Ω  at *x , respectively. Since ( )* *, 0x yΨ > , multiplying (20) by ( )* *,x yΨ  and adding up the resulting 

inequalities, we get a contradiction to (6). Hence (16) does not hold, and so *x  must be optimal for (P).� 

Theorem 5. (Sufficient optimality conditions). Let * * *, , mx y I z RP∈ℑ ∈ ∈ +  and ( )* * *, ,x y z  satisfy Eq.(6)-Eq.(8). 

If, for the given *y  and *z  the problem (P) is quasi-strictly-pseudo type I with respect to .η  Then *x  is an optimal 
solution for (P). 

The proof  of  this Theorem can be given on the lines of  the proof  of  Theorem 4. 
 

4. WOLFE TYPE DUAL 

Using Theorem 2, we will construct the following Wolfe type dual: 

(WD) 
( ) ( )

( )
, ,

Maximise
,

u y u z

u y

Φ +Ω

Ψ
  

subject to ( ) ( ), , n mu z PS T R R∈ × +  and my I R∈ ⊂ + , 

    ( ) ( ), ,u a u bα β= =  

( ) ( ) ( ) ( )( ) ( ) ( ) ( )' ' ', , , , , , , 0.u y u y u y u z u y u y u zI I IΨ Φ − Φ + Ω Ψ + Ψ Ω =                        (21) 

Denote by KWD  the set of  all feasible solutions of  problem (WD). We assume throughout this section that  

( ) ( ), , 0u y u zΦ +Ω ≥  and ( ), 0u yΨ >   for all ( ), , .u y z KWD∈                         (22) 

Theorem 6. (Weak duality). Let ,x P∈ℑ ( ), , .u y z KWD∈  If, for each andy z , the problem (P) is type I with respect 
to η  (see Definition 1). Then  

( ) ( ) ( )
( )

, ,
,

,

u y u y
x

u y
ϕ

Φ + Ω
≥

Ψ
                                          (23) 

where ( )xϕ  is defined by Eq.(1). 
Proof. If  Eq.(23) does not hold, then 



51 
 
Mishra, Wang, Lai and Shukla: Minimax Fractional Programming Involving Type I and Related Functions 
IJOR Vol. 6, No. 2, 45−54 (2009) 

( ) ( ) ( )
( )

, ,
.

,

u y u y
x

u y
ϕ

Φ + Ω
<

Ψ
                                          (24) 

It follows from Eq.(2) that for any ,y I∈  

( )
( )

( )
( ) ( ) ( ) ( )

( )
, , , ,

max ,
, , ,

x y x u y u z
x

Ix y x u y

β
ϕ

β β

Φ Φ Φ + Ω
≤ = <

∈Ψ Ψ Ψ
 

or  

( ) ( ) ( ) ( )( ) ( ), , , , , 0.x y u y u y u z x yΦ Ψ − Φ + Ω Ψ <                                (25) 

Since the problem (P) is Type I with respect toη , for each , my I z R∈ ∈ + , we get 

( ) ( ) ( ) ( )', , , , ,x y u y u y x uI ηΦ −Φ ≥ Φ                                          (26) 

( ) ( )( ) ( ) ( )', , , , ,x y u y u y x uI η− Ψ − Ψ ≥ −Ψ                                     (27) 

( ) ( ) ( )', , , .u z u z x uI η−Ω ≥ Ω                                           (28) 

Multiplying Eq.(26) by ( ), 0u yΨ > , Eq.(27) by ( ) ( ), , 0u y u zΦ + Ω ≥  and Eq.(28) by ( ), 0u yΨ > and adding up 
the resulting inequalities and using Eq.(25), we get  

 ( ) ( ) ( ) ( )( ) ( ) ( ) ( ){ } ( )' ' ', , , , , , , , 0,u y u y u y u z u y u y u z x uI I I ηΨ Φ − Φ + Ω Ψ + Ψ Ω <  

which contradicts Eq.(21). Hence Eq.(24) does not hold, and Eq.(23) does hold.� 

Theorem 7. (Strong duality). If  *x  is an optimal solution for (P) satisfying the conditions of  Theorem 6, then there exist 
*y I∈  and * mz R∈ +  such that ( )* * *, ,x y z  is an optimal solution of  (WD) and the optimal values of  (P) and (WD) 

are equal. 

Proof. If  *x is an optimal solution of  (P), then by necessary conditions there exist *y I∈  and * mz R∈ +  which satisfy 

the constraints of  (WD), so that ( )* * *, ,x y z KWD∈ . Furthermore 

( ) ( )
( )

( )
( ) ( )

* * * * * *, , , * ,* * * *, ,

x y x z x y
x

x y x y
ϕ

Φ + Ω Φ
= =

Ψ Ψ
 

since ( )* *, 0 .x zΩ =  Hence ( )* * *, ,x y z  is an optimal solution of  (WD). Consequently, from Eq.(23), we see that (P) 

and (WD) have the same optimal values.� 
 
5. MOND-WEIR TYPE DUAL 

We introduce the Mond-Weir dual problem as follows: 

(MD)       
( )
( )

,
Maximise

,

u y

u y

Φ

Ψ
 

subject to ( ) ( ) ( ) ( ), , , , ,nu y PS T R I u a u bα β∈ × = =  

( ) ( ) ( ) ( ) ( ) ( )' ' ', , , , , , 0 ,u y u y u y u y u y u yI I IΨ Φ −Φ Ψ + Ψ Ω =  

( ), 0, .mu z z RΩ ≥ ∈ +  

Denote by KMD  the set of  all feasible solutions of  problem (MD). We assume that ( ), 0u yΦ ≥  and ( ), 0u yΨ >  

for all ( ), ,u y z KMD∈ . 

Theorem 8. (Weak duality). Let ,x P∈ℑ  ( ), ,u y z KMD∈ . If  for each , my I z R∈ ∈ + , the problem (P) is type I with 
respect toη . Then 

( ) ( )
( )

,
.

,

u y
x

u y
ϕ

Φ
≥
Ψ

                                                    (29) 
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Proof. If  Eq.(29) does not hold, then 

( ) ( )
( ) .

,
,

yu
yux

Ψ
Φ

<φ                                             (30) 

It follows from Eq.(2) that for any ,y I∈  

( )
( )

( )
( ) ( ) ( )

( )
, , ,

max ,
, , ,

x y x u y
x

Ix y x u y

β
ϕ

β β

Φ Φ Φ
≤ = <

∈Ψ Ψ Ψ
 

or    
( ) ( ) ( ) ( ), , , , 0.x y u y u y x yΦ Ψ −Φ Ψ <                                         (31) 

Since the problem (P) is type I with respect toη , for each , my I z R∈ ∈ + , we get 

( ) ( ) ( ) ( )', , , , ,x y u y u y x uI ηΦ −Φ ≥ Φ                                          (32) 

( ) ( )( ) ( ) ( )', , , , ,x y u y u y x uI η− Ψ − Ψ ≥ −Ψ                                     (33) 

( ) ( ) ( )', , , .u z u z x uI η−Ω ≥ Ω                                           (34) 

Multiplying Eq.(32) by ( ), 0u yΨ > , Eq.(33) by ( ), 0u yΦ ≥  and Eq.(34) by ( ), 0u yΨ > , adding up the resulting 

inequalities using Eq.(31) and the duality constraint ( ), 0, mu z z RΩ ≥ ∈ + , we get   

( ) ( ) ( ) ( ) ( ) ( ){ } ( )' ' ', , , , , , , 0,u y u y u y u y u y u z x uI I I ηΨ Φ −Φ Ψ + Ψ Ω <  

which contradicts the duality constraint 

( ) ( ) ( ) ( ) ( ) ( )' ' ', , , , , , 0 ,u y u y u y u y u y u yI I IΨ Φ −Φ Ψ + Ψ Ω =   

Hence Eq.(30) does not hold, and Eq.(29) does hold.� 
Theorem 9. (Weak duality). Let ,x P∈ℑ  ( ), ,u y z KMD∈ . If  for each , my I z R∈ ∈ + , the problem (P) is 
pseudo-quasi-type I with respect toη . Then 

( ) ( )
( )

,
.

,

u y
x

u y
ϕ

Φ
≥
Ψ

                                                    (35) 

Proof. If  Eq.(29) does not hold, then 

( ) ( )
( )

,
.

,

u y
x

u y
ϕ

Φ
<
Ψ

                                            (36) 

It follows from Eq.(2) that for any ,y I∈  

( )
( )

( )
( ) ( ) ( )

( )
, , ,

max ,
, , ,

x y x u y
x

Ix y x u y

β
ϕ

β β

Φ Φ Φ
≤ = <

∈Ψ Ψ Ψ
 

or  
( ) ( ) ( ) ( ), , , , 0.x y u y u y x yΦ Ψ −Φ Ψ <                                         (37) 

Note that  
( ) ( ) ( ) ( ), , , , 0.u y u y u y u yΦ Ψ −Φ Ψ =                                         (38) 

Since the problem (P) is pseudo-quasi-type I with respect to η , for each , my I z R∈ ∈ + , from duality 

constraint ( ), 0, mu z z RΩ ≥ ∈ + , inequalities Eq.(37) and Eq.(38), we get 

( ) ( ) ( ) ( ){ } ( )' ', , , , , 0,u y u y u y u y x uI I ηΨ Φ −Φ Ψ <                                       (39) 

( ) ( )' , , 0 .u z x uI ηΩ ≤                                                     (40) 

Since ( ), 0u yΨ > , multiplying Eq.(40) by ( ), 0u yΨ >  and adding up the resulting inequality with Eq.(39), we get  

( ) ( ) ( ) ( ) ( ) ( ){ } ( )' ' ', , , , , , , 0,u y u y u y u y u y u z x uI I I ηΨ Φ −Φ Ψ + Ψ Ω <  

which contradicts the duality constraint 

( ) ( ) ( ) ( ) ( ) ( )' ' ', , , , , , 0 ,u y u y u y u y u y u yI I IΨ Φ −Φ Ψ + Ψ Ω =   
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Hence Eq.(36) does not hold, and Eq.(35) does hold.� 
Theorem 10. (Weak duality). Let ,x P∈ℑ  ( ), ,u y z KMD∈ . If  for each , my I z R∈ ∈ + , the problem (P) is 
quasi-strictly-pseudo-type I with respect toη . Then 

( ) ( )
( )

,
.

,

u y
x

u y
ϕ

Φ
≥
Ψ

        

Proof. The proof  can be given as the proof  of  the Theorem 9.� 

Theorem 11. (Strong duality). If  *x  is an optimal solution for (P) satisfying the conditions of  any of  the Theorems 8, 9 

or 10 then there exist *y I∈  and * mz R∈ +  such that ( )* * *, ,x y z  is an optimal solution of  (MD) and the optimal 

values of  (P) and (MD) are equal. 

Proof. If  *x is an optimal solution of  (P), then by necessary conditions there exist *y I∈  and * mz R∈ +  which satisfy 

the constraints of  (MD), so that ( )* * *, ,x y z KWD∈ . Furthermore 

   ( ) ( )
( )

( )
( )

* * *, ,* max .* * *, ,

x y x y
x

y Ix y x y
ϕ

Φ Φ
= =

∈Ψ Ψ
 

It follows from any one of  the weak duality Theorems 8, 9 or 10 that ( )* * *, ,x y z  is an optimal solution of  (MD) and 

min(P) max(MD).= � 

Theorem 12. (Strict converse duality). Let 1x  and ( )* , ,0 0x y z  be optimal solutions of  (P) and (MD), respectively. 

Assume that the conditions of  Theorem 11 hold and the problem (P) is strictly-pseudo-quasi-type I with respect toη . Then 

*
1x x=  is an optimal solution for (P), and (P) and (MD) have the same optimal values ( ) ( )

( )
* , 0

.1 * , 0

x y
x

x y
ϕ

Φ
=
Ψ

 

Proof. The proof  can be given along the lines of  the proof  of  Theorem 5.3 due to Lai and Liu (2003) in the light of  the 
discussions above in this paper.� 

 
6. CONCLUSION 

In this paper, the convexity assumptions for a minimax fractional programming problem of  variational type are relaxed to 
those type I and related functions. Sufficient optimality conditions and duality results are established under type I and related 
functions. Several works in the literature are a particular case of  the results obtained in this paper. 

Further it will be interesting to investigate similar results for nondifferentiable minimax fractional programming problems 
of  variational type under the aforesaid assumptions. 
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