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Abstract ⎯In this paper we propose a methodology for the solution of multiobjective programming problem with fuzzy 
relational equations (FRE’s) as constraints. In the first part of the proposed methodology, we find the feasible solution set 
of FRE’s and give an algorithm to compute minimal solutions and maximal solutions of objective functions which can also 
be computed by constructed computer program and then in the second part of the proposed methodology which works for 
the minimization of perpendicular distances between the parallel hyper planes at the optimal points of the objective 
functions. A compromise optimal solution is obtained as a result of minimization of supremum perpendicular distance. 
Suitable membership function has been defined with the help of supremum perpendicular distance. An example is given in 
last to support the model.  
Keyword⎯Fuzzy relational equations, Multiobjective programming, Disjunction and conjunction operators, Fuzzy 
programming, Minimal solution. 
 
 
1. INTRODUCTION 

The use of fuzzy logic in optimization models has been attempted by Fang and Puthenpura (1993), Klir and Yuan (1995), 
in which problems are described with fuzzy numbers as constraints and fuzzy arithmetic operators are used for solution sets. 
The convexity of the feasible sets remain same as in classical problems, therefore the classical methods can be used to solve 
it. Another development in fuzzy set theory is the idea of using fuzzy relational by Nola, et. al (1991), Sanchez (1978), 
Dubois and Prade (1980), Zimmermann (1991), Wagenknecht, and Hartmann (1990), Pedrycrz (1983), Stamou and 
Tzafestas (2001), Pedrycz (1983), Pedrycz (1991), Higashi and Klir (1984), Yager (1979) and implementation in optimization 
models via FRE’s and characterization of feasible domain by Prevot (1985), Sanchez (1978), Fang and Li (1999), Tamura 
et.al (1979), Wu (1986), Chung and Lee (1997), Li.(1994), Wang (1988) and recently by Pandey and Gaur (2004). This 
encourages researchers to use it in multi criteria decision making (MCDM) problems and many researchers cited as 
Wallenius (1975), Hanan (1979), Feng (1983), Chanas (1989) and Rommelfanger (1989) used/ or modified the concept of 
decision making in fuzzy environment. They have discussed different approaches to tackle the multiobjective programming 
problems. Gupta and Chakraborty (1997) suggested fuzzy approach for multi objective programming problems. Gauss and 
Roy (2003) discussed the compromise hyper sphere for multi objective linear programming problem. Then again Gupta and 
Chakraborty (2005) modified the concept of fuzzy approach and gave fuzzy mathematical programming for multi objective 
linear fractional programming problem. Jain and Lachhwani (2009) proposed a solution methodology for multiobjective 

linear fractional programming problem i.e. ( )
( )

f X
g X

  form in MOLFP. Jain and Lachhwani (2009) discussed solution of multi 

objective linear plus fractional program in which the objective function is the sum of the linear function and quotient 

function ( )( )
( )

+
g Xf X
h X

. Balbas and Galperin et al. (2005) gave a sensitivity analysis in multi objective optimization. Yan and 

Wei et al. (2005) constructed an efficient solution structure of multi objective linear programming. Afterwards Jain and 
Lachhwani (2009) suggested a fuzzy programming approach for solution of multi objective quadratic program. 
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Here we consider an optimization problem as 
        Max 1 2 k{ Z (x), Z (x),..., Z (x) }                                                                                                                                 (1) 

where    qZ (x) x= T
qC     q =1, 2,…,k 

        subject to   x ,              x 0   A bο = ≥                                                                                                                                  (2) 
The membership matrices A, b, x are denoted by ( ),= ijA a ( ),= ib b x=( ) jx where , ,ij i ja b x  are real numbers in the 

unit interval [0, 1] for all ∈i I  and j J∈ and 1 2( , ,..., ), {1,2,..., }= =T
nC c c c I m and J={1,2, ...,n} are the index sets. The 

operator ο signifies max-min composition as  
ij J

Max min( , )  b       i I
∈

= ∀ ∈ij ja x                                                                                                                                         (3) 

Using our proposed methodology in section 3 the vector maximum problem (1) can be reduced to  
        λMax  

subject to    
n

2 1/2 2 1/2
q qj qj q

j=1
- Z (x) + p.{ c  }   p.{ c  }  - Z                  =1, 2,....,λ ≤ ∀∑ ∑ q k   

                     A  x  bο =  
        and                      x 0 ≥                                                                                                                                              (4) 

The present paper is organized as follows: In section 2, we discuss solution sets for the maximal and minimal solutions of 
FRE’s with their existence in the feasible sets. In section 3, we propose a solution methodology into two parts. In the first 
part, we characterize the objective functions of the problem and in the second part, we obtain a compromise optimal 
solution of problem (1) by minimizing the perpendicular distances between two hyper planes 

q q qZ (x) =   and Z (x) = ZqZ where q  and ZqZ  are maximum and minimum value of the function qZ (x) . Defining a 

suitable membership functions and then minimization of perpendicular distances affect the fuzzy parameters used. As a 
result a compromise optimum solution is obtained. In section 4, we prove that the solution obtained by proposed 
methodology is also a pareto optimal solution of the considered problem.  In section 5, stepwise description of algorithm 
with corresponding computer program for obtaining maximal solutions are given. An example and conclusion are given in 
the last section. 

 
2. THE FEASIBLE SET OF FUZZY RELATIONAL EQUATIONS 

Definition: A vector x is a solution of matrix equation in Eq.(1) if and only if all its equations of the form Eq.(2) are 
satisfied. Let X (A,b) be the solution set, then 
X (A,b) = {x =  ( 1 2, ,..., ) x= ,  [0,1], }ο⏐ ∈ ∀ ∈n jx x x A b x j J                                                                                                 (5) 
This will have a unique maximum solution x̂ and a finite set of minimal solutions  x provided X(A,b) φ≠( as by 

Adamopoulos and Pappis (1993). 

Lemma 1. For any ij,   some j J, such that a ,  then X(A,b)ii I b φ∈ ∃ ∈ ≥ ≠ . 
Proof. Let ( , ) φ=X A b , then it will have no solution if ijmax a  for some i Iib< ∈ as by Klir and Yuan (1995), contrary to 
this X(A,b) , φ≠ if for any i I,  some j J∈ ∃ ∈ such that ija ≥ ib . 
Lemma 2. If x X(A,b)∈  then min ij(a , )j ix b= for some j J ∈ and min ij(a , )jx b≤ for other j J∈ . 
Proof. By Eq.(3), max-min ij(a , ) =j ix b .This implies min ij(a , )j ix b≤ . Since x X(A,b)∈ , therefore there exists at least one 
j J∈ such that min ij(a , )j ix b= . 

Now x X(A,b)∈(  is called minimal solution if for all x  X(A,b), x x,∈ ≥ ( implies that x = x( . Similarly x̂ X(A,b)∈ is a 
maximum solution if for any ˆx X(A,b), x x∈ ≤ . Thus the solution set is the union of all lattices between each minimal and 
the unique maximum solution as  

Hence   { }
x X(A,b)

ˆX(A,b) = x X, x x x
∈

∈ ≤ ≤
(

(
U                                                                                                                       (6) 

I. The maximum solution 1 2ˆ ˆ ˆ ˆx =( , ,..., )nx x x  can be obtained as given by Chanas (1989): 

        i
1

ˆ ( @b ),                 j J
m

j ij
i

x a
=

= ∀ ∈∧                                                                                                                               (7) 

where   i
i

ii

if  b1 
@b = 

if >bb
ij

ij
ij

a
a

a
≤⎧

⎨
⎩

                                                                                                                                 (8) 

and x̂ thus obtained is feasible if ˆA x = bο and i iˆJ { ,  =b },  ο= ∀ ∈ij jj a x i I . Where Ji is adjoin partition of  I. 
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II. The set x X(A,b) ∈( of minimal solutions can be computed from algorithm given by Fang and Puthenpura (1993), 
and Pedrycz (1991) as: 
Step 1. Compute Ω  using 

       
ii I , b 0

 = i

j J

b
j∈∈ ≠

Ω ∑∏                                                                                                                                                           (9) 

Step 2. Now convert Ω into conjunctive normal form. 

Step 3. For simplification of Ω  

Using conjunctive operator 
( , )max     if 

.  = 
unchanged if 

c d
l l kc d

l k l k
=⎧

⎨
≠⎩

                                                                                           (10) 

and using disjunctive operator 

     
1 2

1 2 1 2
1 2

1 2 1 2

. ....  if ,
. .... . .....

unchanged,   otherwise

⎧ ≤⎪+ = ∀ ∈⎨
⎪
⎩

m
i im m

m
m m

cc c
c dc dc c d d l l l i I

l l l l l l
                                                                                   (11) 

Step 4. Suppose Ω has s step after the step 3, then X(A,b)
(

has s elements which can be computed as: 
        (p) ( ) ( ) ( )

1 2 x ( , ,..., )p p p
nx x x=(                                                                                                                                           (12) 

where    ( ) ( )p p
j jx c= ,   j J∈   and    p = 1,2, ...,s  

 
3. THE PROPOSED METHODOLOGY 

The proposed methodology can be divided into two parts as: 
Part I : In this part, we characterize the objective function  
Z={z x, x X(A,b)}= ∈Tc                                                                                                                                                   (13) 

If 0≥Tc , then the linear function z = Tc x is monotonically increasing and positive say z& and if 0Tc ≤  is a 
monotonically decreasing and negative over X(A,b)  say z&& , then z =  zz + &&& . For any given T

1 2c ( , , ..., ) n
nc c c R= ∈ , we 

define T
1 2c ( , ,..., )nc c c=& & & & and T

1 2c ( , ,..., )nc c c=&& && && && such that 

j

  if     0
0    if     0

j j

j

c c
c

c
≥⎧⎪= ⎨ <⎪⎩

&  

j

0 if     0
   

  if     0
j

j j

c
c

c c
≥⎧⎪= ⎨ <⎪⎩

&&                                                                                                                                                     (14) 

obviously c c cT T T= +& && , thus for any x X(A,b)∈ , z = z + z& && and hence 
max z = max z +max z& &&                                                                                                                                                     (15) 
Lemma 3. If 0, ,jc j J≤ ∀ ∈ then max  *z = xTc (

&& && . 

Proof. Since 0 ˆx x x≤ ≤( and Tc 0≤ , therefore T T T
0ˆc x c x c x≤ ≤ (  and  *x(  will be such that 

T  *c x =( max T{c x , x X(A,b)}∈( ( , so max T  * =c xz (
&&&& . 

Lemma 4. If 0,jc j J≥ ∀ ∈ , then max ˆz = xTc& & . 

Proof.  ˆ x X(A,b), 0 x x∀ ∈ ≤ ≤ and T Tˆc x c x,≥ therefore max ˆz = xTc& & . 
Hence max  *ˆz = max z + max z = x + xT Tc c (

& && & &&                                                                                                                (16) 
Where optimal solution * x { }jx j J= ∈ is the combination of *x( and x̂ as:- 

j*
 *j

x̂  if     0
x                 

 x  if     0
j

j

c
j J

c
<⎧⎪= ∀ ∈⎨ ≥⎪⎩

(                                                                                                                            (17) 

Lemma 5. If X(A,b) ϕ≠ and *x   is computed according to Eq.(16) then *x  is an optimal solution of Eq.(1) with an 
optimal value                      

n
* T *

1

ˆz  c x = (  + )T T
j j

j

c x c x
=

= ∑ (
& &&                                                                                                                                           (18) 

Proof. Since ˆx x x≤ ≤( , then *ˆ ˆz = z + z = x + x x + x x + x≤ ≤( (
& && & && & && & &&T T T T T Tc c c c c c , therefore *x  is an optimal solution of 

Eq.(1) with value * *z xTc= . 
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Part II: In this part, we use fuzzy programming approach for the solution of multiobjective programming problem Eq.(1) 
with FRE’s as constraints. For problem Eq.(1), we define the distance function d as  

             *
q 2 1/2

qj

Z Z (x)
d (x) = (x)

{ c  }
q q

q qg g
−

= −
∑

                                                                                                                  (19) 

where    *
2 1/2 2 1/2
qj qj

Z Z (x)
,       (x)

{ c  } { c  }
q q

q qg g= =
∑ ∑

 

Zq is the maximum value of Z (x)q . At x x= (ideal point x  – space) as taken by Gupta and Chakraborty (1997), q 0=d  

and x=x  (nadir point in  x  – space), we get the maximum value of qd as:- 

     q 2 1/2
qj

Z Z
d  = 

{ c  }
q q−

∑
                           1, 2,...,q k=  

Thus vector maximum problem Eq.(1) can be modeled as  
Find an action   ∈x S  

which minimize    *Max { (x) ,      1, 2,   ....... }q qg g q k− =  

    where    S = { x : A ,  x 0 }x bο = ≥                                                                                                                           (20) 
To reduce further, we define the membership function q ( (x))qdμ as 

        q

0                     if (x) p
(p - (x)

( (x)) =         if 0 (x)<p
p

1                       if (x) 0  

q

q
q q

q

d
d

d d

d

μ

⎧ ≥
⎪
⎪ ≤⎨
⎪
⎪ ≤⎩

 

where     = Sup {  }qp d        1, 2,...,q k∀ =  
If λ be the maximum value of all q ( (x)),qdμ then  

         (x)  -  .   qd p pλ≤ +  

i.e.     q

2 1/2
ij

Z (x)
- p.  + p

{ c  }
qZ

λ
−

≤
∑

 

        2 1/2 2 1/2
ij ij q- (x) + p.{ c  } .  p.{ c  } ZqZ λ ≤ −∑ ∑       1, 2,...,q k∀ =  

Hence the problem Eq.(1) reduces to  
       Max λ  

   subject to 2 1/ 2 2 1/ 2- ( )  .{  } .  .{  } ,              1, 2,...,q ij ij qZ x p c p c Z q kλ+ ≤ − ∀ =∑ ∑    
                      xA bο =  

and            , x 0λ ≥                                                                                                                                                  (21) 
 

4. THE PROPOSED METHODOLOGY AND PARETO OPTIMAL SOLUTION 

Within the scope of multiobjective decision making theory, the pareto optimality is a necessary condition in order to 
guarantee the rationality of a decisions. Therefore a “reasonable’ solution to multiobjective programming problem should be 
pareto optimal. 

Here the problem of solving multiobjective programming problem with fuzzy relational equations is addressed. Several 
methods have been proposed in literature for obtaining efficient solution (pareto solution) of this problem. We propose 
here a general procedure to obtain compromise optimal solution (Compromise efficient solution) which is also a pareto 
optimal solution of the considered problem. 

In order to prove this fact, let us consider some related equivalent definitions as: 
Definition 1. Pareto Optimal Solution (Efficient Solution) 

0 ∈x X  is an efficient solution to multi objective programming problem Eq.(1) if and only if there exists no other ∈x X  
such that  0≥q qZ Z for all q=1,2,…,k and 0

q qZ Z> for at least one q. 
Definition 2. Compromise Efficient Solution  

For problem Eq.(1), a compromise efficient solution is an efficient solution selected by the decision maker (DM) as being 
the best solution where the selection is based on the DM’s explicit or implicit criteria. 

Zeleny (1982) as well as most authors describes the act of finding a compromise solution to problem Eq.(2) as “… an 
effort or emulate the ideal solution as closely as possible”. 
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In present problem it is well established that the solution set X contains a unique maximum solution x̂ and it may 
contain several minimal solutions x X(A,b)∈(  corresponding to each objective function. Thus the solution set X is fully 
characterized by the set of all maximum solutions ˆ j Jjx ∀ ∈  and all minimal solutions ( )p

jx for all objective functions. 
 
Since in the proposed methodology which works for the minimization of the perpendicular distances between two hyper 

planes where q  and ZqZ are the maximum and minimum value of the function qZ (x) and can be calculated using maximum 

and minimal solutions respectively. Similarly distance function ( )qd x  can be calculated and a suitable membership function 
has been defined. Then minimization of perpendicular distances affect the fuzzy parameters used. As a result the 
compromise optimal solution is obtained. 

Compromise solution depends on the choice of lowest point (lowest justifiable value) of the objective functions. When 
the justifiable value changes, the compromise solution also changes. In the figure 1, if Z0 be the ideal point and N and N' be 
the two different minimum aspiration levels and their compromise solution are Z1 and Z2 respectively, because NZ0 and 
N'Z0 are the direction in which the decision parameter λ  maximizes. In our methodology to find minimum aspiration level 
we have used minimum value of each objective function. This point is the ideal point of the vector minimization problem of 
the same objective functions with same constraints which generally lies outside the feasible region. Knowing the lowest 
point and zenith point (ideal point), we can find the direction of the decision parameter λ in which λ maximizes so that 
each objective function gets equal importance in the optimization process. 

 
Figure 1. Selection of ideal point 

It is obvious from figure that there is no feasible solution with 0
q qZ Z≥ for all q=1,2,…,k and 0

q qZ Z> for at least one q. 
This proves that the proposed methodology gives pareto optimal solution for multiobjective programming problem with 
FRE’s.  

 
5. ALGORITHM  

Step 1. Compute i
1

ˆ ( @b ),   j J
m

j ij
i

x a
=

= ∀ ∈∧ according to Eq.(7) and construct maximum solution x̂ . 

This step is also constructed by the following computer program in C programming: 

#include<stdio.h> 
#include<conio.h> 
void main() 
{ 
float a[10][10],b[10],c[10],x[10]; 
int m,n,i,j,k; 
clrscr(); 

Z0 

N'

N 

Z1 Z2 
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printf("Enter an integer value for rows in matrix : "); 
scanf("%d",&m); 
printf("Enter an integer value for cols in matrix : "); 
scanf("%d",&n); 
printf("Enter %d values for first matrix :\n",m*n); 
for(i=0;i<m;i++) 
{ 
for(j=0;j<n;j++) 
{ 
scanf("%f",&a[i][j]); 
} 
} 
printf("Enter %d values for second matrix :\n",m); 
for(i=0;i<m;i++) 
scanf("%f",&b[i]); 
for(j=0;j<n;j++) 
{ 
for(i=0;i<m;i++) 
{ 
if(a[i][j]<=b[i]) 
{ 
x[i]=1; 
} 
else 
x[i]=b[i]; 
} 
c[j]=x[0]; 
for(i=1;i<m;i++) 
{ 
if(c[j]>x[i]) 
c[j]=x[i]; 
} 
} 
printf("The Answer Matrix is following ..........\n"); 
for(j=0;j<n;j++) 
printf("%f\t",c[j]); 
getch(); 
} 
Step 2. Check the feasibility ˆA  x = b, ο if yes, go to next step, otherwise stop and the problem has no solution. 
Step 3. Find the index set i iJ ={ =b }, .ij jj J a x i Iο∈ ∀ ∈  

Step 4. Find the minimal solution set X(A,b)
(

as given in section 3. 
Step 5. Define average cost vector Tc& and Tc&& according to (14). 
Step 6. Compute q ˆz x,        1, 2,  .......T

qc q k= ∀ =& &  and qz x T
qc= (

&& && for all minimal solutions. 
Step 7. Calculate for all minimal solutions qZ q qz z= +& && . 

Step 8. Compute q q qZ z z= +& && for maximum qz&& and qZ q qz z= +& && for minimum qz&& . 

Step 9. Calculate q

2 1/2
ij

Z (x)

{ c  }
qZ−

∑
                 1, 2,  ........,q k∀ =  

Step 10. Calculate   sup   { }qp d=  
Step 11. Solve the reduced problem  

Max λ  
subject to 2 1/ 2 2 1/ 2- ( )  .{  } .  .{  } ,              1, 2,...,q ij ij qZ x p c p c Z q kλ+ ≤ − ∀ =∑ ∑     

            xA bο =  
and             , 0xλ ≥  

and required compromise optimal solution of MOLP obtained. 
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6. EXAMPLE 

Consider the problem Eq.(1) with 

0.5 0.8 0.9 0.3 0.85 0.4
0.2 0.2 0.1 0.95 0.1 0.8

  
0.8 0.8 0.4 0.1 0.1 0.1
0.1 0.1 0.1 0.1 0.1 0.1

A

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

 
with 4  and  6 andm n= = 1 (3, 4,1,1, 1,5),= −TC 2 (1,1,1,1, 1,1),TC = − b (.85, 0.6, 0.5, 0.1)T=       

Step 1. For the above given A and b , using constructed program, we find x̂ @bA= (0.5, 0.5, 0.85, 0.6,1.0, 0.6)=  which is 
supported by output as 
Enter an integer value for rows in matrix: 4 
Enter an integer value for cols in matrix: 6 
Enter 24 values for first matrix: 
.5  .8  .9  .3   .85   .4 
.2  .2  .1  .95  .1    .8 
.8  .8  .4  .1    .1    .1 
.1  .1  .1  .1    .1     0 
Enter 4 values for second matrix: 
0.85   0.6   0.5   0.1 
The Answer Matrix is following.......... 
0.500000        0.500000        0.850000        0.600000        1.000000     0.600000 

Step 2. ?x is feasible, Since x b.Thus x( , ) .A A bο φ= ≠  

Step 3. For { } { } { } { } { }1 2 3 41, 2,3, 4 ,  3,5 ,  4,6 ,  1, 2 ,  1,2,3,4,5,6I J J J J= = = = =  

Step 4.  s 8=  and the minimal solutions are 
(1)

(2)

(3)

(4)

                    x (0.0,0.5,0.0,0.0,0.85,0.6)
                    x (0.0,0.5,0.0,0.6,0.85,0.0)
                    x (0.0,0.5,0.85,0.0,0.0,0.6)
                    x (0.0,0.5,0.85,0.6,

=

=

=

=

(

(

(

( 0.0,0.0)

 

(5)

(6)

                    x (0.5,0.0,0.0,0.0,0.85,0.6)
                    x (0.5,0.0,0.0,0.6,0.85,0.0)

=

=

(

(  

(7)                    x (0.5,0.0,0.85,0.0,0.0,0.6)=(  
(8)  x (0.5,0.0,0.85,0.6,0.0,0.0)=(  

Step 5. 1 1c (3, 4,1,1,0,5) and c (0,0,0,0, 1,0)T T= = −& &&  
        2 2c (1,1,1,1,0,1)  and c (0,0,0,0, 1,0)T T= = −& &&    

Step 6. 1 1 ˆz x (3,4,1,1,0,5) (0.5,0.5,0.85,0.6,1.0,0.6) 7.95Tc= = =& &  

2 2 ˆ            z x (1,1,1,1,0,1) (0.5,0.5,0.85,0.6,1.0,0.6) 3.05
            For all minimal, solutions (computed in step 4)

Tc= = =& &
 

the values of 1 1z xTc= (
&& && are -0.85, -0.85, 0.0, 0.0, -0.85, -0.85, 0.0, 0.0. and the values of 2 2z xTc= (

&& && are                                                       
-0.85, -0.85, 0.0, 0.0, -0.85, -0.85, 0.0, 0.0  respectively. 

Step 7.  The values of objective functions 1 1 1z z z= +& && and 2 2 2z z z= +& && with corresponding solutions   
respectively are  
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(1)
1 2

(2)
1 2

(3)

                    x* (0.5,0.5,0.85,0.6,0.85,0.6),   z 7.10,   z 2.20

                    x* (0.5,0.5,0.85,0.6,0.85,0.6),   z 7.10,   z 2.20

                    x* (0.5,0.5,0.85,0.6,0.0,0.6),  

= = =

= = =

= 1 2
(4)

1 2
(5)

1 2
(6)

  z 7.95,   z 3.05

                    x* (0.5,0.5,0.85,0.6,0.0,0.6),     z 7.95,   z 3.05

                    x* (0.5,0.5,0.85,0.6,0.85,0.6),   z 7.10,   z 2.20

                    x* (0.5,0.

= =

= = =

= = =

= 1 2
(7)

1 2
(8)

1 2

5,0.85,0.6,0.85,0.6),   z 7.10,   z 2.20

                    x* (0.5,0.5,0.85,0.6,0.0,0.6),    z 7.95,   z 3.05

                    x* (0.5,0.5,0.85,0.6,0.0,0.6),    z 7.95,   z 3.05

= =

= = =

= = =

 

Step 8. 1 1 2 2Max.(z )= z 7.95   ;       Max.(z )= z 3.05= =  

2 1 2 2          Min.(z )= z 7.10    ;       Min.(z )= z 2.20= =  

Step 9. 1 1
1 2 1/2

1j

Z Z
d  = 

{ c  }
−

∑
 

7.95 - 7.10= 0.1167
53

=  

        2 2
2 2 1/2

2j

Z Z
d  = 

{ c  }
−

∑
305 - 2.20 0.3470

6
= =  

Step 10. qp = sup  { d } 0.1167=  

Step 11. According to Eq(21), the problem reduces to  

1 2 3 4 5 6

1 2 3 4 5 6

                          Max. 
     Subject to       -3x 4x x x x x 0.85 7.10
                               -x x x x x x 0.286 2.764
                                A  x
and          

b

λ
λ
λ

ο

− − − + − + ≤ −
− − − + − + ≤ −

=
                 x 0

 
≥

 

Solving this L.P.P using the solutions obtained in step 7, the compromise solution of MOLPP is   
(3) (4) (7) (8)x* x* , x* , x* , x* (0.5,0.5,0.85,0.6,0.0,0.6),= =  with values 1 2z 7.95,   z 3.05, and =2.8235.λ= =  

 
7. CONCLUSION 

An effort has been made to solve a multiobjective programming problem with FRE’s as constraints and the compromise 
optimal solution can be obtained by proposed methodology which depends upon the value of λ as well as the complexity 
of FRE’s .The main difficulty with the proposed methodology is to obtain feasible solution set of FRE’s. However, this 
computational work can be reduced using computer program. Also the complexity in equations can be reduced using 
stepwise procedure for finding out all minimal solutions for the given system of FRE’s.  
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