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Abstract⎯In this paper we discuss a special class of  continuous linear programs called simple continuous linear programs 
(SP). In our recent paper [Wen et al. (2009)], we proposed a recurrence algorithm for solving (SP). The major computational 
works in the proposed algorithm are finding the global minimal values of  the given continuous functions on 2n intervals. 
However, when n becomes large, it could be rather time-consuming. An improved numerical method for finding 
approximate solutions for (SP) is proposed to overcome the computational bottleneck. 
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1. INTRODUCTION 

In this paper we discuss a class of  infinite-dimensional optimization problems called simple continuous linear programs 
(SP) and described below. Let 0>T , and let [0, ]∞

+L T  be the set of  nonnegative real valued, Lebesgue measurable, 
essentially bounded functions on the closed interval [0, T]. The simple continuous linear programs are defined as follows: 

0

0
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subject to ( ) ( ) ( ), [0, ]
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β γ
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∫
∫
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t

SP f t x t dt

x t x s ds g t t T

x t L T

 

where x(t) is the decision variable, f(t) and g(t) are given functions and ,β γ are given constants. The dual problem (DSP) of  
(SP) is defined as follows: 
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subject to ( ) ( ) ( ), [0, ]

( ) [0, ].
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The simple continuous linear programs are special cases of  the so called continuous time linear programs (CLP) which 
were first proposed by [Bellman (1957)]. In the literature, (CLP) has been studied by a number of  authors whose work can 
be loosely divided into two areas, those concerned with establishing strong duality theorems and those concerned with 
computational methods. One can consult [Tyndall (1965), Levinson (1966), Grinold (1969), Lehman (1954), Drews (1974), 
Hartberger (1974), Segers (1974), Anstreicher (1983), Buie and Abrham (1973)]. The model of  (CLP) has wide range 
applications, but is notoriously difficult to solve in general. Recently, [Wen et al. (2009)] proposed a practical and efficient 
method for finding approximate solutions of  (SP) with 1.β γ= = Like the approach in [Buie and Abrham (1973)], it is a 
discrete approximation algorithm. The major computational works in each iteration of  proposed algorithm are finding the 

global minimal values of  the given functions f and g on each subinterval 1[ , ]
2 2
−

n n

i iT T  for 1 2 .≤ ≤ ni  However, when n 

becomes large, it could be rather time-consuming. To overcome the computational bottleneck, we will propose an improved 
numerical method for finding the approximate values of  problems (SP). Besides, we will further show how to construct the 
feasible approximate solution of  (SP). 

The remainder of  this paper is organized as follows. In section 2, we extend the method proposed in [Wen et al. (2009)] 
to the present problem (SP). In section 3, we propose an improved method for finding the approximate solutions of  (SP).  

For the reader’s convenience, we adopt the following notations. Let F(P) and V(P) denote the feasible set and optimal 
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value of  a linear programming problem (P), respectively.; and the superscript “T” denotes the transpose operation.  
 

2. PRELIMINARY RESULTS 

For the remainder of  this paper, we make the following assumptions for the given constant ,β γ and the given functions 
f(t) and g(t) . 
Assumption 1. 

(1) 0β >  and 0γ ≥ ; 
(2)  f(t) and g(t) are given continuous functions and ( ) 0g t >  for all [0, ]∈t T .  
We note that the results developed in [Wen et al. (2009)] can be easily extended to the present problem (SP). As in [Wen et 

al. (2009)], (SP) and (DSP) have the weak duality property described as follows. 
Lemma 1. (Weak duality)  

(1) F(SP)≠∅ and F(DSP)≠∅. 

(2) If  x(t) and w(t) are feasible for (SP) and (DSP), respectively, then 
0 0

( ) ( ) ( ) ( ) .≤∫ ∫
T T

f t x t dt g t w t dt  

To solve (SP), following [Wen et al. (2009)], for each n∈N , let 1 2 1
2 2 2

{0, , , , }n

n n nP T T T−=  be a partition on [0,T]. Let 
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n i i
ib g x x T T−= ∈  and ( ) 1
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ic f x x T T−= ∈  for 1 2ni≤ ≤ . Consider the following finite 

linear program:                   
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The dual problem (Dn) of  (Pn) is defined as follows: 

(Dn): minimize    
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By the same method as in [Wen et al. (2009)], we can derive a recurrence method for solving (Dn) described as follows. 
Lemma 2.  

Suppose that Assumption 1 holds. Then  
(i). F(Pn)≠∅, F(Dn)≠∅ and ( ) ( )n nV P V D= . 
(ii). Let the vector ( ) ( ) ( ) ( )

1 2 2
( , , , )n

n n n nw w w Τ=w L  be defined by 
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                                            (1) 

Then ( )nw is an optimal solution of  (Dn), and for 1 2ni≤ ≤  

( ) 2 20 (1 ) (1 ) exp
2 2
γ γ γ

β β β ββ β
− ⎛ ⎞

≤ ≤ + ≤ + ≤ ⎜ ⎟
⎝ ⎠

n nn i
i n n

L T L T L Tw ,                                               (2) 

where { }
0
max ( ), 0

t T
L f t

≤ ≤
=  

Besides, we also have the following result. 
Lemma 3. We have lim ( ) ( )n nV P V SP→∞ = , lim ( )n nV D→∞ = ( )V DSP  and V(SP) = V(DSP). 

Moreover, we let 
( )

2
max{ : 1, , 2 },

2n
n n

in

T w iδ = =                                                                    (3) 
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β β
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− = ,                                                                          (5) 

and 
{ }

[0, ]
sup ( ) ( )n

t T
g t g t

∈
− = nε ,                                                                          (6) 

where ( )nf t  and ( )ng t  are step functions defined as follows: 
( ) ( ) 1
2 2 2

( ) , ( ) , if  [ , )n n n
n n i i

n n if T b f t b t T T−= = ∈  for 1 2ni≤ ≤ , and ( ) ( ) 1
2 2 2

( ) , ( ) , if  [ , )n n n
n n i i

n n ig T b g t b t T T−= = ∈ for 

1 2ni≤ ≤ . Note that, by (2) and (3), we have  

2
2

0 (1 ) exp
2 2 2

n

n n n n

LT T LT Tγ γδ
ββ β β

⎛ ⎞
≤ ≤ + ≤ ⎜ ⎟

⎝ ⎠
.                                                          (7) 

Then, by the same arguments as in [Wen et al. (2009)], it is not difficult to obtain the following results. 
Lemma 4. Under Assumption 1, we have 0 ( ) ( ) ( ) ( )n n nV SP V P V DSP V D ξ≤ − = − ≤ , where 

( )2 2 0
2 exp( ) 1 ( ) exp( ( )) ( )n n

Tn
n n nT T t g t dtξ ε δ ρ ε δ ρ ρ= + − + + −∫ .                                         (8) 

Using the constructive method proposed in [Wen et al. (2009)], we can find the approximate solutions of  (SP) by virtue 
of  the optimal solution of  (Pn). Besides, the error bounds between the optimal value of  (SP) and the objective value of  the 
approximate solutions can be estimated. 
Lemma 5. Let ( ) ( ) ( ) ( )

1 2 2
( , , , )n

n n n nx x x Τ=x L be an optimal solution of  (Pn). Define ( ) ( )nx t  by  
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                                                      (9) 

Then ( ) ( )nx t is a feasible solution of  (SP) and ( )

0
0 ( ) ( ) ( )

T n
nV SP f t x t dt ξ≤ − ≤∫ . 

To summarize the above results we have the following algorithm: 
Algorithm 1: 

Let μ be a prescribed small positive number and an initial number 0n ∈N be given. 
Step 1. Set 0n n← . 
Step 2. Calculate the vector ( )nw defined as in Eq.(1) and evaluate the error bound nξ defined as in Eq.(8). 

Step 3. If  nξ μ≤  then stop and evaluate the value 
2

( ) ( )

1 2=
∑

n

n n
i in

i

T b w  as an approximate value with error bound nξ . And the 

function ( ) ( )nx t defined as in Eq.(9) is an approximate solution of  (SP) with error bound nξ . Otherwise, update n← n+1 and 
go to Step 2. 

 
3. AN IMPROVED APPROXIMATION METHOD FOR SOLVING (SP) 

In the above approach, the major computational works in each iteration are finding the global minimal values of  f and g 

on each subinterval 1[ , ]
2 2
−

n n

i iT T  for 1 2ni≤ ≤ . However, when n becomes large, it could be rather time-consuming. To 

overcome this computational bottleneck, instead of  taking the minimal values of  f and g on every 1[ , ]
2 2n n

i iT T− , we take 

the values at middle points of  1[ , ]
2 2n n

i iT T− . That is, we let, for1 2ni≤ ≤ , 
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1
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2

n
i n
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−
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i n
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Consider the corresponding linear programming problem defined as follows: 

( )nP% : maximize    
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The dual problem ( )nD%  of  ( )nP%  is defined as follows: 
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There is a recurrence method for solving ( )nD%  which is similar with lemma 2. 
Theorem 1. Suppose that Assumption 1 holds. Then 

(i). ( )nF P% ≠∅, ( )nF D% ≠∅ and ( ) ( )n nV P V D=% % .  
(ii). The vector ( ) ( ) ( ) ( )
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is an optimal solution of ( )nD% , and for 1 2ni≤ ≤   
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where L is defined as in Eq.(2). 
We now discuss the relation between ( )nw%  and ( )nw . It is obvious that ( ) ( )n n

i iw w≥%  for all i, since ( ) ( )n n
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Under Assumption 1, f  (t) and g (t) are uniformly continuous on [0, T], hence, ( ) ( )0 and 0, asn n
c bd d n→ → →∞ . Thus 

lim ( ) lim ( ).n nn n
V D V D

→∞ →∞
=%  Therefore, by Lemma 3, we have the following result. 

Theorem 2. Suppose that Assumption 1 holds, then lim ( ) ( )n nV P V SP→∞ =%  and lim ( )n nV D→∞ =% ( )V DSP . 

Moreover, we can also provide an error bound for every approximate value ( )nV D% of  V(DSP). To see this we make the 
following assumption. 
Assumption 2. f and g satisfy Lipschitz conditions, that is, there exist L and M such that 1 2 1 2( ) ( )f t f t L t t− ≤ −  and 

1 2 1 2( ) ( )g t g t M t t− ≤ − for every 1 2, [0, ]t t T∈ . 
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We complete this proof. 
It is remarkable that we can find an optimal solution of  ( )nP%  by virtue of  the dual optimal solution ( )nw derived by the 
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nF D∈w % , then ( )nx  and 
( )nw become an optimal solution pair if  and only if  they satisfy the following equations: 
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                                                             (19) 

Hence, if  ( )nw% is an optimal solution of  ( )nD% , and the vector ( )( ) ( ) ( ) ( )
1 2 2

, , , n
n n n nx x x

Τ
=x% % % %L is constructed by the 

following recursion:  
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Then it is not difficult to show that ( )nx%  is feasible for ( )nP%  and ( )nx%  as well as ( )nw% satisfy Eq.(19). Therefore, ( )nx%  

is an optimal solution of  ( )nP% . 
Moreover, by using ( )nx% , we can find a corresponding solution of  (SP). To see this, for n∈N , we define step functions 

ng%  and nf%  as follows: 
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Note that, under Assumption 2, 10 ( ) ( )
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Then, by the following two cases, we have ( ) ( )
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For further work, we let ( )
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Then, under proper conditions, we can show that ( )ˆ ( )nx t is a feasible solution of  (SP). 

Theorem 4. Suppose that Assumption 1 and 2 hold. If  n∈N  satisfying 2 β
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T
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Hence we obtain, under Assumption 2, that  
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Remarks:  
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Numerical Examples: 
For illustration purpose, we use two examples to implement the improved method and to show the quality of  the 

purposed error bound. 
Example 1: 

3/ 2 2

0

0

(S 1): maximize sin(7 ) ( )

subject to 4 ( ) 3 ( ) 2 cos(5 ), [0,3 / 2]
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Example 2: Let 
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. We consider the following problem (SP2). 

1 3
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( ) [0,1].
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∈

∫
∫  

To illustrate the convergence, we select the partition number n from 15 to 24. Using MATLAB Version 7.0.1 on a PC for 
the experiment, the result obtained by running the program which implement the proposed method are presented in the 
following tables, where APV(n) is the objective value of  the approximate solution ( )ˆ ( )nx t , that is, 

( )

0
ˆ( ) ( ) ( )

T nAPV n f t x t dt= ∫ ; and EB(n)= { }max n n nα θ γ+ +  is the error bound between the objective value of  the 

approximate solution ( )ˆ ( )nx t  and the optimal value of  (SP). In Example 2, we note that the function g(t) oscillates as t 
tends to 0, hence it could be rather time-consuming to find the global minimum of  g(t) on each subinterval 

1 , (1 2 )
2 2

n
n n

i iT T i−⎡ ⎤ ≤ ≤⎢ ⎥⎣ ⎦
when n becomes large. 

 
 

Table 1. Numerical results for example 1. 
n ( )APV n  ( )EB n  

15 1.0409268 0.0045677 
16 1.0410199 0.0022838 
17 1.0410664 0.0011419 
18 1.0410897 0.0005710 
19 1.0411013 0.0002855 
20 1.0411071 0.0001427 
21 1.0411100 0.0000714 
22 1.0411115 0.0000357 
23 1.0411122 0.0000178 
24 1.0411126 0.0000089 
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Table 2. Numerical results for example 2. 

n ( )APV n  ( )EB n  

15 0.5216110 0.0014449 
16 0.5216367 0.0007224 
17 0.5216495 0.0003612 
18 0.5216560 0.0001806 
19 0.5216592 0.0000903 
20 0.5216608 0.0000452 
21 0.5216616 0.0000226 
22 0.5216620 0.0000113 
23 0.5216622 0.0000056 
24 0.5216623 0.0000028 
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