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Abstract---In this paper, we consider an integrated inventory model with one vendor and multiple retailers. In this 
three-tier supply chain system, the vendor purchases raw material produces into finished products, and delivers 
finished products to the retailers. We assume that the production (at the vendor) and the replenishment (at all the 
retailers) of  the finished products share the common cycle time (T), but the replenishment cycle of  raw material 
for the vendor is an integer multiple of  T. The focus of  this study is to solve the optimal common cycle to 
minimize the average joint total costs (AJTC) for the vendor in the whole supply chain system. To solve this 
problem, we derive the expression for the AJTC, and analyze the theoretical properties of  the optimal AJTC curve. 
We show that the optimal AJTC curve is piece-wise convex with respect to T, and the junction points on the 
optimal AJTC curve can be easily located by a closed-form formula. By utilizing our theoretical properties, we 
propose an efficient search algorithm for solving this problem. Our random experiments demonstrate that our 
search algorithm effectively obtains the optimal solution, and interestingly, the vendor could gain more cost saving 
when more retailers join the three-tier supply chain system.  
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1. INTRODUCTION 

Recently, information technology strongly enhances the inventories coordination across the entire supply chain. 
In late 1980’s, EDI systems improve vendor-retailer integration and result in better streamline in supply chain 
systems. An excellent example shown in Sehr (1989) is Levi Strauss, an apparel vendor, who employs LeviLink (an 
EDI system) to link with its vendors to share the information on inventory and to quick response to the 
customers’ demand change. Udo (1993), Gottardi and Bolisani (1996) and Lambert, Stock and Ellram (1998) all 
emphasize that inventory information sharing between vendors and retailers leads to successful cases of  inventory 
management.  

The information sharing in supply chain systems leads a trend for the researchers to study the cooperation 
between the vendors and the buyers. It has been advocating that collaboration is an important way for creating 
win-win relationships among the members in supply chains. Researchers have been addressing lots of  efforts on 
developing efficient strategies for the inventories coordination across the entire supply chain. Research efforts 
have been addressed to coordinate the inventory policies of  the members in the supply chain to reduce the joint 
inventory costs. One may refer to Banerjee (1986), Goyal (1988), Das and Goyal (1991), Banerjee and Kim (1995) 
and Goyal and Gupta (1989) for the integrated inventory models. Also, Banerjee and Banerjee (1992) and Thomas 
and Griffin (1996) provide reviews on the related research works on the integrated inventory models.  

The one warehouse multi-retailer (OWMR) lot-sizing problem is one of  the most representative inventory 
models that integrate partners in supply chain systems. The OWMR concerns with the determination of  lot sizes 
and schedule of  n retailers replenished from the central warehouse. Many researchers have been addressing their 
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efforts to solve the optimal solution for the OWMR. Schwarz (1973) derived the necessary conditions for an 
optimal policy and some analytical bounds under stationary-nested policy. He also proposed a heuristic that usually 
solves a near-optimal solution for the OWMR lot-sizing problem. Schwarz and Schrage (1975) focused on solving 
the optimal lot sizes of  a single product in multi-echelon assembly systems under stationary-nested policy. Graves 
and Schwarz (1977) investigated the characteristics of  optimal continuous review policies for arborescent systems 
under stationary-nested policy. Maxwell and Muckstadt (1985) proposed a heuristic for complex multi-stage, 
multi-product systems under stationary nested policy. Lu and Posner (1994) solved the OWMR lot-sizing problem 
under so-called integer-ratio policy which restricts each retailer orders at an integer or reciprocal of  an integer 
multiple of  the warehouse order interval. Mitchell (1987) extended Roundy ’s (1985) results to allow backlogging 
and introduce a class of  policies, called nearly-integer-ratio policies which is different from the class of  integer-ratio 
policies by not requiring stationarity of  orders placed by retailers. Later, Anily and Federgruen (1990, 1991), and 
Hall (1991) added the vehicle routing costs in the OWMR systems. We note that the OWMR closely relates to this 
study. But it possesses some characteristics that make its decision-making scenario significantly different from that 
in this study. First, the OWMR does not take the inventory of  raw material into accounts. Also, the warehouse 
does not produce finished items so that the capacity of  the production facility would not be considered in the 
OWMR.  

All of  the papers reviewed above are for the inventory control problems where the vendor/distributor and the 
buyers/retailers play the key roles in the two-echelon supply chains. For the recent extensions on the two-echelon 
inventory models, one may refer to Chen, Federgruen and Zheng (2001). 

On the other hand, some researchers have been devoted to inventory models that include raw material 
inventory in their formulation. Most of  these articles consider the integration between the raw material 
requirement and the production batch size for a single product. One may refer to Kim and Chandra (1987), Roan, 
et al. (2000) and Sarker and Khan (1999, 2001) for reference. We note that Sarker and Khan ’s (2001) paper reviews 
two delivery policies of  raw material in integrated production/inventory system, viz., “lot for lot” and “multiple lot 
for a lot” policies. Here, we adopt the “multiple lot for a lot” policy to formulate our mathematical model in this 
study. On the other hand, some researchers take account the raw material inventory in the economic lot scheduling 
problem (ELSP), which is closely related to our problem in this study. For instance, Hwang and Moon’s (1991) 
model considers the special case with only two products, but the raw material is deteriorating. Gallego and Joneja 
(1994) formulate the mathematical model for the ELSP and consider various issues associated with the 
management of  raw materials for production. Sarker and Newton (2002) proposes a genetic algorithm to solve the 
ELSP with raw material in which the production system has a limited storage space and the transportation fleet 
capacity is of  known capacity. Interested readers may also refer to an excellent review on this category of  
problems in Goyal and Deshmukh’s (1992) paper. We note that these studies did not take account the distribution 
aspect (to the retailers) in their models. 

Yang and Wee (2003) propose a model that is very similar to ours in this study. They consider a supply chain 
with one vendor and multiple buyers, and the raw material and the finished product are deteriorating. The key 
difference from our model is that they employ the concept of  JIT lot-splitting from raw material supply to 
production and from production to distribution in their formulation.  

Recently, Munson and Rosenblatt (2001) formulate a mathematical model for a three-tier supply chain system. 
In their study, there is one raw material supplier, one manufacturer and only one vendor in the supply chain. The 
vendor makes the inventory decision according to the EOQ rule. Then, the manufacture determines the integrated 
inventory policy follows this assumption. Interestingly, they derive their solution approach by exploring the 
optimality structure of  the optimal cost function with respect to the ordering quantity from the vendor.  

In this paper, we extend Munson and Rosenblatt’s (2001) study to another case in which there is one raw 
material supplier, one manufacturer and multiple retailers in a three-tier supply chain system. Similar to Munson and 
Rosenblatt’s methodology, we derive theoretical results on the curve of  the optimal objective function value and 
propose an effective search algorithm.  

We outline the rest of  this paper as follows. In section 2, we give a brief  introduction to the problem 
formulation and present the mathematical model. Also, we derive some theoretical analysis on the optimality 
structure of  the mathematical model. In section 3, we propose our search algorithm based on our theoretical 
results. Then, we show that our search algorithm effectively obtains the optimal solution by random experiments 
in section 4. Finally we address our concluding remarks in section 5. 

 
2. MATHEMATICAL MODEL AND THEORETICAL ANALYSIS 

In this section, we first discuss the scenario that the decision-maker faces in section 2.1. Then, we present the 
formulation of  the mathematical model in section 2.2. Also, we conduct full analysis on the curve of  the optimal 
objective function value in sections 2.3 to 2.5.  
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2.1 The decision-making scenario 

In this study, we consider an integrated inventory model for a three-tier supply chain system. A single vendor 
purchases raw material, produces into finished products, and delivers finished products to multiple retailers in this 
supply chain.  

We assume that the production (at the vendor) and the replenishment (at all the retailers) of  the finished 
products share the Common Replenishment Epoch (CRE), which is denoted by T. We note that CRE has been 
popularly used in model formulation for deriving coordination mechanism in supply chain systems. And, the 
vendor may consolidate several retailers’ replenishment orders and save the order processing costs by adopting 
such a CRE mechanism. One may refer to Viswanathan and Piplani’s (2001) and Mishra’s (2003) papers for more 
discussion on the implementation of  CRE mechanism. On the other hand, in order to save the ordering cost of  
raw material, the vendor replenishes the raw material in an integer multiple of  T, i.e., mT where +∈ Nm . 
Furthermore, we assume that raw material shortage is not allowed for the vendor, and no shortage is allowed for 
the retailers. Also, the retailers are willing to take the vendor ’s replenishment strategy. 

We note that such a decision-making scenario applies to many of  the suppliers in retailing business and grocery. 
In these industries, the retailers grant the selling channel to the vendor by providing floor space or storage racks in 
the retailers’ store and assisting the vendor to sell the products to the customers. The retailers pursue their profit 
by charging the vendor for the floor space and earning the markup from the selling price of  the products. Also, 
the retailers often authorize the vendors to replenish their products at their will (but, usually with a pre-specified 
replenishment quantity) in such a case. Note that the CRE mechanism not only is simply to implement, but also, it 
guarantee a feasible production schedule for the vendor. Therefore, the CRE mechanism could significantly 
simplify the production scheduling and the logistics in the vendor’s production system by using a regular and 
repetitive replenishment schedule for each retailer.  

Before presenting our mathematical model, we define the notation needed later. Let ar be the ordering cost per 
raw materials order for the vendor. The carrying cost per unit of  raw material per unit time is denoted as hr. 
Denote the production rate of  the vendor as P, which is a known constant. Let S be the setup cost per production 
run for the vendor and u be the usage rate of  raw materials for producing each unit of  the finished product. The 
carrying cost for each unit of  finished product held per unit time is denoted as hf. The demand rate at retailer i, is 
denoted as Di. Each order from retailer i incurs for an order processing cost of  ai. For the vendor, the carrying 
cost for the finished product sent to retailer i is hi per unit per unit time held. All of  the parameters are constants 
and known to the decision makers. 

 
2.2 The objective function 

In this study, we formulate this integrated inventory model from the vendor’s point of  view. Our focus is to get 
the optimal CRE *T  and the optimal multiplier *m  to minimize the average joint total costs for the vendor in 
the whole supply chain system.  

The objective function includes three categories of  cost terms: (1) the vendor’s average total costs for the 
finished products sent to all the retailers, (2) the average total costs incurred by the finished products held by the 
vendor, and (3) the retailer’s average purchasing and inventory holding costs for the raw material. These cost terms 
are derived as follows. 

We denote the average total costs for the finished products sent to retailer i as TCi(T). Notice that the vendor is 
the owner of  the finished products stored at each retailer. Therefore, the vendor takes the inventory holding costs 
for the finished products stored at each retailer. Since we assume that the vendor delivers the finished products to 
retailer i after a fixed cycle T, TCi(T) is given by  

[ ]
2

( ) i
i i i

a TTC T h D
T

= + …………………………………………………………………………….…………. (1) 

We denote the average total costs incurred by the finished products held by the vendor as TCf(T). By Figure 1, 
one may easily observe that the total costs incurred in a replenishment cycle T is ( )2 2

2 1
f nh

ii
S D p T

=
+ ∑ . Therefore, 

TCf(T) is given by  

2

12
( )

n
f

f i
i

ThSTC T D
T p =

 
= +  

 
∑ …………………………………………………………………………………... (2) 

Next, we derive the expression for the vendor’s average purchasing and inventory holding costs for the raw 
material which is denoted as TCr(m,T). In order to calculate the average inventory holding cost, we need to 
evaluate the inventory level within a replenishment cycle for the raw material, i.e., mT.  
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Figure 1. The inventory level of  the finished product. 

 
 By carefully observing Figure 2, one may find that there are m triangles and m rectangles in the inventory 

holding area for the raw material. The total holding costs incurred in a cycle of  mT are given by 
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Figure 2. The inventory level of  the raw materials 

 
Therefore, one shall have the expression for TCr(m,T) as follows. 
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By eqs. (1), (2) and (4), we have the objective function, denoted by Γ(m,T), as follows. 

1

( , ) ( ) ( , ) ( )
n

f r i
i

m T TC T TC m T TC T
=

Γ = + + ∑ ………….……………………………………………………….. (5) 

Therefore, our focus is to solve the problem (P) in (6) as follows. 
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1 1

2 2

1 1 1

1 1
2

1
2

+ +∈ℵ ∈ = =

= = =

   
Γ = + + + −   

   
  

+ + +  
  

∑ ∑

∑ ∑ ∑

,

( , ) ( )

                             ( ) .

min
n n

r
i r i

m T R i i

n n n

r i f i i i
i i i

a Tm T S a m uh D
T m

T uh D h D h D
p

………….……….………………....… (6) 

where Γ(m,T) is the average joint total costs (AJTC) for the vendor in the whole three-tier supply chain system.  
 

2.3 Characterization of  the optimality structure 

In order to investigate the theoretical properties on the curve of  the optimal objective function value, we first 
solve the optimal value of  m*(T’) and compute the optimal objective function value for each given value of  T= T’ 
on the T-axis. (That is, m*(T’)= { }arg min ( ( '), ')m N m T T+∈

Γ .) Let ( )TΓ  be the optimal average joint total costs 

function value with respect to T. (In other words, { }*( ) ( ( ), )|T m T T T R +Γ ≡ Γ ∈  is a function of  T.) Then, we 

may plot ( )TΓ  using a small-step T∆  as shown in Figure 3.  
Importantly, Figure 3 shows two interesting observations on the ( )TΓ  function:  

Cost

Time

T

P

PTD
n

i
i∑

=1



Yao: An Integrated Inventory Model for Three-tier Supply Chain Systems  
IJOR Vol. 7, No. 1, 11−25 (2010) 

 

15 

15 

1. ( )TΓ  is piece-wise convex with respect to T.  
2. Let *

Lm  and *
Rm , respectively, are the optimal multipliers of  the left-side and right-side convex curves with 

regard to a junction point in the plot of  the ( )TΓ  function. Then, 1* *
L Rm m= + . 

The first observation motivates us to obtain the optimal solution for ( )TΓ  at any given value of  T by some 
close-form calculation. The second leads us to the idea to change the optimal multiplier m at the “junction point” 
of  two neighboring convex curves in the proposed algorithm. In the following discussion, we will have further 
analysis on these two observations and will formally prove them as the theoretical properties on the ( )TΓ  
function. 

 

Figure 3. The curve of  the ( )TΓ  function 
 
Before having further discussions on the first observation, we present an important property of  the function 

)(TΓ  in Lemma 1. 
Lemma 1 Assume that Ta < Tb and m*(Ta)= m*(Tb). Then, m*( T’)= m*( Ta) for all ' ( , ).a bT T T∈   
Proof：Please refer to Appendix A.1. ■ 

Next, we assert the optimality structure of  the function )(TΓ  in Proposition 1. 
Proposition 1 )(TΓ  is piece-wise convex with respect to T. 
Proof：  By eq. (6), we may compute the second derivative (with respect to T) for ),( TmΓ  by 

32

2 ),(
mT
a

T
Tm r=∂

Γ∂ . Therefore, given any positive integer m , 02

2 ),( >∂
Γ∂

T
Tm  for all T > 0. So, we conclude that 

( , )m TΓ  is convex with respect to T. Let )(mσ  be the set of  T such that m*(T)= m , i.e., 
}0,)(|{)( * >=≡ TmTmTmσ ………………………………………………………...………………………… (7) 

By Lemma 1, ( )mσ  must be an interval on the T-axis. Also, different values of  m  form non-overlapping 

intervals on the T-axis. Therefore, ( )TΓ  is piece-wise convex since ( , )m TΓ  is convex on its support set ( )mσ . 
■ 

 
2.4 Junction points 

Next, we introduce the “junction points” on the ( )TΓ  curve, which is a piece-wise convex function with 
respect to T. We define a junction point for ( )TΓ  as a particular value of  T where two consecutive convex 
curves ( , )m TΓ  and 1( , )m TΓ +  concatenate. These junction points determines at “what value of  T” where one 
should change the value of  m so as to obtain the optimal value for the ( )TΓ  function. 

We first derive a closed-form for the location of  the junction points. We define the difference function 
1( , , )m m T∆ +  by  
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∆ + = Γ + − Γ = − +  +  

∑ …………………...……………................ (8) 

We note that 1( , , )m m T∆ +  is the cost difference between using m and m+1 as its multiplier. Since the first 
derivative of  the function 1( , , )m m T∆ +  is always positive for all 0T > , 1( , , )m m T∆ +  is an increasing function 
with respect to T. Suppose that the search algorithm proceeds from an upper bound toward smaller values of  T, 
we evaluate 1( , , )m m T∆ +  from positive values, to zero and finally, to negative values. Let w be the point where 

1( , , )m m T∆ +  reaches zero. Assume that m is the optimal multiplier for T w> . This scheme implies that one 
should keep using m until it meets w. From the point w onwards, the value of  ( )TΓ  can be improved by using 
m+1 as its optimal multiplier. We note that w is the point where two neighboring convex curves 1( , )m TΓ +  and 

( , )m TΓ  meet. Importantly, such a junction point w not only provides us with the information on at “what value 
of  T” where one should change the value of  m so as to secure the optimal value for the ( )TΓ  function. 

By the rationale discussed above, we derive a closed form to locate the junction points by letting 
1 0( , , )m m T∆ + =  as follows. 

1
2 1( ) [ ( ) ]n

r r ii
J m a m m uh D

=
= + ∑ ……………………...……………………………………………………. (9) 

Note that ( )J m i=  indicates the location of  the ith junction points. By (9), the following inequality (10) holds  
2 1( ) ... ( ) ... ( ) ( )J v J m J J< < < < < ……...…………………………………………………………………….. (10) 

where v is an (unknown) upper bound on the value of  m.  
Theorem 1 is an immediate result from (9) and (10), and it provides strengthen foundation for our search 

scheme. 
Theorem 1 Suppose that *

Lm  and *
Rm  are the optimal multipliers of  the left-side and right-side convex 

curves with regard to a junction point w of  the ( )TΓ  function, then 1* *
L Rm m= + .  

The following corollary is also a by-product of  (9) and (10), and it provides an easier way to obtain the optimal 
multiplier * ( )m T  for any given 0>T . 

Corollary 1 For any given 0>T , the optimal multiplier * ( )m T  is given by 

21 1
2 2 1

1 8* ( ) [ ]n
r r ii

m T a T uh D
=

 = − + +  ∑ ………...………………………………………………………... (11) 

Proof: Please refer to Appendix A.2. ■ 
 

2.5 Local optimum 

Recall that ( )TΓ  is piece-wise convex with respect to T (as shown in Proposition 1). It is important for us to 
locate the local minima for the ( )TΓ  function since they are the candidates for the optimal solution. Let kT

(
 be 

the local minimum candidate for the ( )TΓ  function given * ( )m T k=  for k N +∈  where  

2 2

1 1 1 1 1

12 1( ) ( )
n n n n n

r
k i r i r i f i i

i i i i i

aT S a k uh D uh D h D h D
k p= = = = =

    = + + − + + +        
∑ ∑ ∑ ∑ ∑

(
…………………...…… (12) 

and kT
(

 is derived from solving the equation by setting the first derivative of  ( , )m TΓ  equal to zero. 
Therefore, one may use the following rule to check the existence of  a local minimum for the ( )TΓ  function: if  
either of  the following conditions holds, (1) 1 1( )T J≥

(
 and (2) 1[ ( ), ( ))kT J k J k∈ +

(
, then kT

(
 exists as a local 

minimum for the ( )TΓ  function.  
 

3. THE OPTIMAL SEARCH ALGORITHM 

In this section, we present a search scheme which obtains the optimal solution for the problem (P) in (6).  
One may refer to (6) for the complicated expression of  Γ(m,T). We note that Γ(m,T) is not trivial to solve since 

it is actually a nonlinear integer programming problem. On the other hand, recall that the ( )TΓ  function is 
piece-wise convex with respect to T. Also, our theoretical results on the junction points for the ( )TΓ  curve 
encourage us to solve the optimal solution by searching along the T-axis. 

To design our search algorithm, we need to define the search range by setting a lower and an upper bound on 
the T-axis, denoted by lowT  and upT , respectively. In order to efficiently find lowT  and upT , we refer to Wildeman, 
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Frenk and Dekker’s (1997) approach to obtain the search range for the joint replenishment problem (JRP). We 
note that they obtain the search range [ , ]low upT T  by solving a relaxed version of  the JRP in their paper.  

Before our derivation, we first separate the relaxed problem for Γ(m,T) into two parts, i.e., 
( , ) ( ) ( , )m T T m TθΓ = + Φ  where ( , )m TΦ  collects all the terms containing both the decision variables m and T in 

Γ(m,T). The expressions for ( )Tθ  and ( , )m TΦ  are given in equations (13) and (14), respectively.  

( ) ( )2
1

1 12
( ) ( ( ) )

n n
nr

i r i f ii
i i

uhTT D uh D TC T TC T
p

θ
=

= =

= − + +∑ ∑ ∑ ………..……………..………………………. (13) 

12
( , )

n
r

r i
i

a Tm T muh D
mT =

Φ = + ∑ ，m N +∈ ……………………………………………………………...…......... (14) 

Similar to Wildeman, Frenk and Dekker’s approach, we first transform Γ(m,T) from a nonlinear integer program 
to a convex programming problem by relaxing the constraint m N +∈  by 1,m m R≥ ∈ . We denote the relaxed 
problem for Γ(m,T) by ( , )R m TΓ . Therefore, we have  

( , ) ( ) ( , )R Rm T T m TθΓ = + Φ ………………………...………………………………….……………………. (15) 
where { }1( , ) ( , ) : ,R m T m T m m RΦ = Φ ≥ ∈  and ( , )R m TΓ  are continuous relaxations for ( , )m TΦ  and ( , )m TΓ , 
respectively.  

Let { }1( ) inf ( , ) : ,R T m T m m RΦ = Φ ≥ ∈  and { }1( ) inf ( , ) : ,R T m T m m RΓ = Γ ≥ ∈ . Then, by the definition of  (15), we 
may link the relationship between ( )R TΦ  and ( )R TΓ  by eq. (16) as follows.  

( ) ( ) ( )R RT T TθΓ = + Φ ………………………………………………………………………………..…………. (16) 
Interestingly, one may easily explore the optimality structure of  ( )R TΦ  as follows. 
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where 
1

2* [ ]n
r r ii

x a uh D
=

= ∑ , and *x  corresponds to the local minimum for the function 1( , )m TΦ = . By (17), 
one has the second-order derivative for ( )R TΦ  by 

2

2 3

0
2

*

*

,  .
( )

,  .R
r

if T xd T
dT a T if T x

 ≤
Φ = 

>
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Therefore, ( )R TΦ  is convex with respect to T for T>0 by (18). On the other hand, it can be easily shown that 
2

2 0 0( ) ,T
T

Tθ∂

∂
> ∀ > , i.e., ( )Tθ  is also convex with respect to T. Thus, ( )R TΓ  is obviously a convex function. 

Denote the optimal solution of  ( )R TΓ  by RT . The following proposition indicates the location of  RT . 
Proposition 2 One may locate RT  by 
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Proof: Please refer to Appendix A.3. 
Denote *T  as the optimal replenishment cycle time for the function ( )TΓ . In the following proposition, we 

will show that a lower bound and an upper bound on the search range can be obtained by the values of  T where 
the objective value of  ( )R TΓ  equals ( )RTΓ . 

Proposition 3 Let lowT  be the smallest and upT  be the largest T for which the function ( )R TΓ  is equal to 

( )RTΓ . Then *
low upT T T≤ ≤ . 

Proof: Since the ( )R TΓ  function is strictly convex, we have the result that *
low upT T T≤ ≤ . Consequently, for 

values of  lowT T<  the ( )R TΓ  is larger than ( )RTΓ . Since the ( )R TΓ  is a relaxation of  ( )TΓ , ( ) ( )R RT TΓ > Γ  
for lowT T< , lowT  is a lower bound on *T .  

The proof  for that *
upT T≤  can be done similarly. ■ 
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It is shown how the bounds lowT  and upT  are secured in Figure 4. We note that the bounds lowT  and upT  
can be obtained by any line search algorithm (e.g., bisection search, or quadratic fit search, see Bazarra, et al., 1993).  

Now, we are ready to enunciate the search algorithm.  
 
The search algorithm 
1. Secure RT  by Proposition 2. Then, obtain the bounds lowT  and upT  by some line search algorithm, e.g., 

bisection search.  
2. Use (9) to get all the junction points in [ , ]low upT T . Start the search from the largest junction point, say J(k), 

by setting * ( )T J k= , 1*m k= −  and *Γ = ∞  (i.e., the optimal objective value at * ( )T J k= ). Then, move to 
the next junction point, and go to Step 3. 

3. At each junction point J(k), do the following items: 
(a) If  all the junction points in [ , ]low upT T  are examined, go to Step 4; otherwise, go to Step 3(b).  

(b) Compute 1( , ( ))k J kΓ −  and check: if  1 *( , ( ))k J kΓ − < Γ , then 1* ( , ( ))k J kΓ = Γ − , )(* kJT =  and 
1*m k= − .  

(c) Check the existence of  a local minimum by Corollary 2. If  the local minimum 1kT −

(
 exists, then compute 

11( , )kk T −Γ −
(

 and check: if  11 *( , )kk T −Γ − < Γ
(

, then 11* ( , )kk T −Γ = Γ −
(

, 1
*

kT T −=
(

 and 1*m k= − . 
4. Report the optimal solution: the optimal replenishment cycle *T , the optimal multiplier *m , and the 

optimal objective value *Γ . Stop. 
 

 

Figure 4. The search range of  [ , ]low upT T  in the search algorithm 
 

4. NUMERICAL EXPERIMENTS 

In this section, we present a numerical example to demonstrate the implementation of  the proposed search 
algorithm. Also, we show that our search algorithm effectively obtains the optimal solution by random 
experiments. 

 
4.1 A Demonstrative Example 

First, we use a simple example with one vendor and three retailers to demonstrate the search process of  the 
proposed algorithm. The data set for this example is shown in Table 1 as follows.  

We summarize the search process as follows. 
1. By Proposition 2, we secure RT  by RT =4.4639. Then, obtain the bounds lowT  and Tup by some line 

search algorithm, e.g., bisection search. We have Tlow = 3.591 and Tup = 5.1277 for this example.  



Yao: An Integrated Inventory Model for Three-tier Supply Chain Systems  
IJOR Vol. 7, No. 1, 11−25 (2010) 

 

19 

19 

2. We locate the largest junction point J(1)=4.3301, and compute the optimal objective value at J(1) by 
1 1 1 145 4( , ( )) $ , .m JΓ = = . Set 1* ( )T J= , 1*m =  and 1 1* ( , ( ))JΓ = Γ . Since 1 1[ ( ), )T J∈ ∞

(
, 1T

(
 exists as a local 

minimum. We evaluate 11( , )TΓ
( =$1,142.7 which is less than *Γ . Therefore, we replace the optimal solution with 

that at 1T
(

 by setting 1
*T T=

(
, and *Γ = 11( , )TΓ

(
.  

3. Then, we move to the next junction point J(2) = 2.5. Since J(2) < lowT , it is the last junction point that we 
need to examine. Now, we locate 2T

(
, i.e., the local minimum for m=2, by 2T

(
= 3.986. Since 2T

(
 locates between 

its neighboring junction points, i.e., 2 2 1[ ( ), ( ))T J J∈
(

, it exists as a local minimum. We evaluate 

22( , )TΓ
(

=$1,141.5 which is less than *Γ . Therefore, we replace the optimal solution with that at 2T
(

 by 
setting 2

*T T=
(

, 2* =m , and *Γ = ),2( 2T
(

Γ .  
4. Since J(2) is the last junction point that we need to examine, we stop the search algorithm. We shall report 

the optimal solution by 2
*T T=

(
, 2*m = , and *Γ = 22( , )TΓ

(
=$1,141.5. 

 
Table 1. The data set of  the demonstrative example. 

 
Retailers 

Parameters 1 2 3 
Ordering cost：ai 700 400 500 
Holding cost：hi 0.05 0.04 0.06 
Demand rate (annual)：Di 950 700 850 

Vendor 

Raw material ordering cost：ar 750 

Raw material holding cost：hr 0.02 

Finished items holding cost：hf 0.07 

Setup cost：S 300 

Production rate：P 2700 

usage rate of  raw materials：u 0.8 
 
4.2 Random experiments 

In this section, we perform some experiments using randomly generated examples to analyze the characteristics 
of  the optimal solutions for different problem settings. For example, we would like to observe how different 
number of  retailers and different utilization rates of  the vendor’s production system may affect the run time and 
solution quality of  the proposed algorithm. 

First, we discuss how to randomly generate the instances in our numerical experiments. Table 2 presents the 
mean and range, i.e., the two necessary parameters of  any uniform distribution, for all of  the parameters of  the 
experimental problems. Then, all the parameters for an experimental problem are uniformly generated 
from ]2,2[ rangemeanrangemean +− . Since the production is a value-added process, we assume that the 
inventory holding cost rate for the raw material shall be no larger than that for the finished product, i.e., .r fh h≤   

We divide our experiments into 16 settings by combing different number of  retailers and different levels of. 
Here, we designate four levels of  

1

n
ii

P D
=∑  at 1.1, 1.2, 1.3 and 1.4 (that correspond to utilization rates of  the 

vendor’s production system at 0.91, 0.83, 0.77, and 0.71, respectively). We note that 
1

n
ii

P D
=∑  must be greater 

than 1 to guarantee a feasible production schedule for the vendor. Also, the number of  retailers in the supply chain 
systems is set to be 10, 15, 20 and 25, respectively.  

For each combination of  
1

n
ii

P D
=∑  and the number of  retailers, we randomly generate 25 instances. After 

solving each instance, we collect the run time and the error estimate of  the proposed algorithm. We define the 
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error estimate by ( )*Γ − Γ Γ  where Γ , expressed in (31), is a lower bound on the optimal objective function 

value of  the problem (P) in (6). (One may refer to Appendix A.4 for the derivation of  Γ .)  

To examine the effectiveness of  the proposed search algorithm, we first review the run time data in Table 3. 
The average run time of  the 400 instances is around only 0.693 seconds. Also, though the average run time does 
increase with the number of  retailers, its growth rate is not significant. Therefore, our run time data in Table 3 
verify that our search algorithm effectively obtains the optimal solution for the instances in our numerical 
experiments. 
 

Table 2. The ranges for the parameters used 
in the random experiments 

 
 Mean Range  

Ordering cost of  the retailers 800 1600 [0,1600] 
Holding cost of  the retailers 0.05 0.1 [0,0.1] 
Demand rate of  the retailers 1000 1000 [500,1500] 
Raw materials ordering cost  

of  the vendor 600 1200 [0,1200] 

Raw materials holding cost  
of  the vendor 0.035 0.07 [0,0.07] 

Finished items holding cost  
of  the vendor 

max{ } 0.02= +f ih h    

Setup cost of  the vendor 500 1000 [0,1000] 
Production rate of  the vendor Depend on the sum of  retailers’ demand 

Usage rate raw materials  
of  the vendor 0.9 0.6 [0.6,1.2] 

 
Next, we review the solution quality of  the proposed algorithm by examining the data of  the error estimates. 

The average value of  the error estimates for the 400 instances in Table 3 is around 3.565% that could be 
reasonable for most of  the decision makers in the real world. According to our experiments, the average error 
estimate does not significantly vary with the utilization rate of  the vendor’s production system. But, interestingly, 
the average error estimate decreases as the number of  the retailers increases. It implies that the vendor could gain 
more cost saving when more retailers join the three-tier supply chain system in the scenario of  this study. 

 
Table 3. The summary of  the random experiments 

 

 10 retailers 15 retailers 20 retailers 25 retailers 

∑
=

n

i
iDP

1

 Error Run time 
(sec.) Error Run time 

(sec.) Error Run time 
(sec.) Error Run time 

(sec.) 

1.1 5.00% 0.69 3.82% 0.69 3.32% 0.67 2.65% 0.67 

1.2 5.04% 0.61 3.76% 0.69 2.57% 0.63 2.59% 0.69 

1.3 5.03% 0.61 4.03% 0.68 3.00% 0.68 2.24% 0.69 

1.4 5.38% 0.60 3.74% 0.69 2.79% 0.66 2.08% 0.71 

Average 5.11% 0.63 3.84% 0.69 2.92% 0.66 2.39% 0.69 
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5. CONCLDING REMARKS 

In this paper, we consider an integrated inventory model for a three-tier supply chain system with one vendor 
and multiple retailers. In this supply chain, the vendor purchases raw material, produces into finished products, 
and delivers finished products to the retailers. We assume that the production (at the vendor) and the 
replenishment (at all the retailers) of  the finished products share the common cycle time (T), but the 
replenishment cycle of  raw material for the vendor is an integer multiple of  T, i.e., mT, m N +∈ . The focus of  
this study is to secure the optimal common cycle *T  and the optimal multiplier *m  to minimize the average 
joint total costs for the vendor in the whole supply chain system.  

To approach this problem, we derive the expression for the average joint total costs, and analyze the theoretical 
properties of  the optimality objective function value with respect to T, i.e., ( )TΓ . We show that the ( )TΓ  
function is piece-wise convex with respect to T, and the junction points on the ( )TΓ  curve can be easily located 
by a closed-form formula. By utilizing our theoretical properties, we propose an efficient search algorithm to solve 
this problem. Our random experiments demonstrate that our search algorithm effectively obtains the optimal 
solution, and interestingly, the vendor could gain more cost saving when more retailers join the three-tier supply 
chain system.  
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APPENDIX  

A.1 The proof  for Lemma 1 
Proof: Let m1 < m2 where m1 and m2 are positive integers. We define a function 1 2( , , )m m T∆  by 

2 1 2 1
1 2 1 2

11 2 2
( ) ( )

( , , ) ( , ) ( , )
n

r
r i

i

am m m mm m T m T m T uh D T
m m T =

− −  
∆ = Γ − Γ = −  

 
∑ . Then, by 

2 2 2 1
1 2 3

1 2

2 0( )
( , , ) ram mm m T T

m m T
−

∂ ∆ ∂ = >  (for all T>0), we assert that ),,( 21 Tmm∆  is a convex function with 

respect to T. Therefore, Case (1) in Figure 5 never exists since it contradicts our assertion that ),,( 21 Tmm∆  is a 
convex function. Also, one may locate the intersection point of  ),( 1 TmΓ  and ),( 2 TmΓ  at 

1 2 1 2
1

2 0int ( , )
n

r r i
i

T m m a m m uh D
=

= >∑  by setting 1 2 0( , , )m m T∆ =  as shown in Case (2) of  Figure 5.  

Next, we will prove Lemma 1 by contradiction. Assume that there exists a value of  ' ( , )a bT T T∈  such that 
* *( ') ( )bm T m T≠ . So, * *( ') ( )am T m T≠ , and * *

int ( ( '), ( )) 'a bT m T m T T T< < . That is, we would have the following 
result, * * *( ( '), ) ( ( ), ) ( ( ), )b b b a bm T T m T T m T TΓ < Γ = Γ , which contradicts our assumption that the optimal 
multiplier at Tb is m*(Tb)= m*(Ta). ■ 
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Figure 5. The two possible cases in the 1 2( , , )m m T∆  function 
 
A.2 The proof  for Corollary 1 
Proof: By the definition of  junction point J(m), ( ) mTm =*  when 1( ) ( )J m T J m≤ < − . By the closed form for 

the junction point, we have  

1

2 1( )
n

r r i
i

a m m uh D T
=

 
+ ≤ 

 
∑ ……………………………………………………………………………….(20) 

and  

1

2 1( )
n

r r i
i

T a m m h D
=

 
< − 

 
∑ …………………………………………………………….…………………. (21) 

One may simplify (20) by 2 2

1
2 0

n

r r i
i

m m a T uh D
=

 
+ − ≥ 

 
∑ . Since m must be a positive integer, we have  

21 1
2 2

1

1 8
n

r r i
i

m a T uh D
=

 
≥ − + +  

 
∑ ……………...…………………………………………………………... (22) 

Similarly, one may simplify (21) and get (23) as follows. 

21 1
2 2

1

1 8
n

r r i
i

m a T uh D
=

 
< + +  

 
∑ ………...…………………………………………………………………..(23) 

By combining (22) and (23), we have  

2 21 1 1 1
2 2 2 2

1 1

1 8 1 8
n n

r r i r r i
i i

a T uh D m a T uh D
= =

   
− + + ≤ < + +   

   
∑ ∑ ………………………….……………... (24) 

Since the difference between the two inequalities in (24) is equal to 1, it implies that an integer exists between 
J(m) and J(m-1) or both sides of  (24) are both integers. In either case, taking the upper-entire of  the expression in 
the right-hand side satisfies (11). ■ 

 
A.3 The proof  for Proposition 2 
Proof: In Proposition 2, we use the value of  ( )' *xθ  to dichotomize into two possible cases as follows. Recall 

that ( ) ( ) ( )R RT T TθΓ = + Φ  where ( )Tθ  and ( )R TΦ  are expressed in Section 3. 

Case 1): ( ) 0' *xθ ≥ . By the definition of  ( )R TΦ , 0( )d
RdT TΦ >  for *T x> . Also, by the convexity of  

)(' Tθ  and (16), it is obvious that 0' ( )R TΓ ≥  for *T x>  when ( ) 0*' xθ ≥ . Therefore, the local minimum 

must exist for ( )R TΓ  when * .T x≤  Recall that 
1

2( ) n
R r r ii

T a uh D
=

Φ = ∑  when *T x≤ . Hence, we may 

assert that the minimum value of  ( )R TΓ  must exist at  

2 2
1

1 1 1 1 1

2( ) ( ) ( )
n n n n n

fR r
i i i i r i i

i i i i i

huhT S a h D D uh D D
p p= = = = =

 
= + + − + 

 
∑ ∑ ∑ ∑ ∑ . 

Case 2: ( ) 0' *xθ < . By the definition of  ( )R TΦ , 0( )d
RdT TΦ =  for *T x≤ . By the convexity of  )(Tθ  

and (16), 0' ( )R TΓ <  for *T x≤  when ( ) 0' *xθ < . Therefore, the local minimum must exist for )(TRΓ  

when *T x> . Recall that 
12

* ( ) nr
r ii

a Tg T uh D
T =

= + ∑  when *T x> . Hence, we may assert that the minimum 

value of  )(TRΓ  must exist at 

 

),( 1 TmΓ

),( 2 TmΓ

Ta Tb Tint 

),( 1 TmΓ

),( 2 TmΓ

Case (1) Case (2) 

 

),( 1 TmΓ

),( 2 TmΓ

Ta Tb Tint 

),( 1 TmΓ

),( 2 TmΓ

Case (1) Case (2) 
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2 2
2

1 1 1 1

2( ) ( ) ( )
n n n n

fR r
i r i i i i

i i i i

huhT S a a h D D D
p p= = = =

 
= + + + + 

 
∑ ∑ ∑ ∑ .■ 

 
A.4 The derivation of  the lower bound on the objective function value 
In order to derive the lower bound on the objective function value, we separate it into three parts and derive a 

lower bound for each part correspondingly.  
1. A lower bound on the average total costs for the n buyers:  
We may express the average total costs for the n buyers by [ ]21

( )n T
i i i ii

TC T a T h D
=

= +∑ . Obviously, the 

EOQ formula (i.e., 2* ( )i i i iT a h D= ) provides an easy lower bound on the total costs for each buyer. Therefore, 
we have a lower bound on the average total costs for the n buyers by 

1 1
2*( )n n

i i i iii i
TC T a h D

= =
=∑ ∑ ……………...……......................................................................................................(25) 

2. A lower bound on the average total costs for the vendor:  

By (2), we have the average total costs for the vendor expressed by ( ) 2

1

2( )
n

f f i
i

TC T S T Th p D
=

= + ∑ . We may 

solve its optimal value of  T by taking its first derivative with respect to T, and setting it equal to zero by 
2

1
2* n

f f ii
T pS h D

=
= ∑ . Therefore, we have a lower bound on the average total costs for the vendor by 

2
12*( ) n

if f ifTC T pSh D== ∑ …………………………………………………………………….…………… (26) 
3. A lower bound on the average total costs for the raw material:  
Recall that we express the average total costs for the raw material as follows.  

2

1 1

1
2

( , ) ( )
n n

r r
r i r i

i i

a uhTTC m T D m uh D
mT p = =

  = + + −     
∑ ∑ …………………………………………….…...…… (27) 

In order to utilize our analysis, we collect the terms in ( , )rTC m T  with the variable m in the function 

12
( , )

n
r

r i
i

a Tm T muh D
mT =

Φ = + ∑ , as we did in (14). Also, we define a new function ( )Tψ  for those terms in 

( , )rTC m T  without the variable m as follows.  
2

1 12 2
( )

n n
r r

i i
i i

uh T uh T
T D D

p
ψ

= =

 
= − 

 
∑ ∑ ………………………………………………………………………… (28) 

So, we have ( , ) ( , ) ( )rTC m T m T Tψ= Φ + . 
To minimize the objective function value of  ( , )m TΦ , we would have the optimal solution by 

1
2* n

r r ii
x a uh D

=
= ∑ .  

Let us define a new function ( )Tω  by { }1( ) ( , ) :T m T mω = Φ ≥ . Obviously, the objective function value of  
( , )m TΦ  is bounded from below by )(Tω  since )(Tω  is a continuous relaxation of  ( , )m TΦ . Furthermore, 

we have the exact expression for the function )(Tω  as follows.  

1
2

1

*

*

, if .( )
( , ), if .

n
r r ii

a uh D T xT
T T x

ω =
 <= 

Φ ≥

∑ ………………………………………...……………………………... (29) 

Therefore, we have a lower bound on the average total costs for the raw material by 
( ) ( ) ( )rTC T T Tω ψ= + ………………………...……………………………………………….……………. (30) 

By the expression of  )(Tω , we note that there are two possible cases to obtain the minimizer *T  for 
( , )rTC m T , namely, either * *T x<  or * *T x≥ . Now, we have further analysis for these two cases as follows. 

Case 1: * *T x< :  

By (25), we know that 0)(' =Tω  in Case 1. Also, we have 
1 1

2 0'( )
n n

i r i
i i

T D p uh D pψ
= =

   
= − <  

   
∑ ∑  since it 

must hold that 
1

n

i
i

D p
=

<∑  for the feasibility of  the production capacity utilization. Therefore, we conclude that 

'( ) '( ) '( )rTC T T Tω ψ= + <0. Importantly, it implies that there exist no optimal solution in Case 1.  
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Case 2: * *T x≥ :  

In Case 2, we have ( )2

1 1 12 2 2
( ) n n nr r r r

i i ir i i i

uh T uh T a uh T
TC T D D D

p T= = =
= − + +∑ ∑ ∑ . We may easily solve the 

optimal solution by plugging the minimizer ( )2
1

* 2 ∑ =
=

n

i irrr DuhpaT  in the function )(TTC r
.  

Summarizing our discussion above, we have a lower bound for the average total costs in the whole supply chain 
system, denoted as Γ , by  

)()()( **
1

*
rrff

n

i ii TTCTTCTTC ++=Γ ∑ =
………………………………………………………………………... (31) 


