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Abstract Considering nodes failure cases, this paper mainly proposes an algorithm for the cloud computing network (CCN) 
to evaluate the capability that the CCN can send d units of data from the cloud to the client through two paths under both the 
maintenance budget and time constraints. To guarantee a good quality of service (QoS), the CCN should be maintained while 
falling to a failed state such that it cannot afford enough capacity to satisfy demand. Thus, the maintenance reliability is 
proposed in this paper. To estimate the maintenance reliability, a bounding approach is utilized to generate two sets of capacity 
vectors, {UB-MPs} and {LB-MPs}, where a UB-MP is the minimal capacity vector satisfying demand d and time constraint T 
while a LB-MP is the minimal capacity vector satisfying demand d, maintenance budget B, and time constraint T. Subsequently, 
the upper and lower bounds of maintenance reliability can be computed in terms of such vectors by applying the recursive sum 
of disjoint products algorithm. 
Keywords  Maintenance reliability, Node failure, Cloud computing network (CCN), Estimation, Minimal paths. 
 
 
1. INTRODUCTION 

In a cloud computing paradigm, information is processed or stored by servers on the internet and cached temporarily on 
clients (Hewitt, 2008). Moreover, the cloud computing is developed for the enormous requirements in which the “cloud” is 
structured by powerful servers providing resources (computing, storage, or network bandwidth). For a practical cloud 
computing network (CCN), the capacity of each edge (physical lines, fiber optics, or coaxial cables) and node (servers or 
switches) should be stochastic due to failure, partial failure, or maintenance. That is, the CCN with each edge/node having 
several possible capacities or states is a typical stochastic-flow network (Jane et al., 1993; Lin, 2001, 2004, 2007, 2010; Xue, 
1985; Yeh, 2004; Zuo et al., 2007).  

To guarantee the CCN keeps a stable quality of service (QoS), it should be maintained when falling to a failed state such that 
the cloud cannot provide enough capacity to fulfill the client’s demand d. Yeh (2004) defined the maintenance cost as the 
amount of restoring a network from its failed state back to its original state, where the original state implies that edges/nodes 
are with their highest capacities. Hence, the maintenance budget should be considered. The transmission time that data 
transmitted through the CCN is another important issue to be concerned. When data are transmitted through a CCN, it is 
desirable to select a shortest delayed path to minimize the transmission time (Bodin et al., 1982; Golden and Magnanti, 1977). 
However, the flow of data transmission is not considered in these works. In order to find a path which sends the given amount 
of data from the source (cloud) to the sink (client) with minimum transmission time, Chen and Chin (1990) proposed a version 
of the shortest path problem called the quickest path problem. In such problem, both the capacity and the lead time are 
involved in each edge and are assumed to be deterministic (Chen and Chin, 1990; Hung and Chen, 1992; Martins and Santos, 
1997). Since then, several related researches of quickest path problems are proposed thereafter (Chen and Hung, 1994; Chen 
and Tang, 1998, Clímaco et al., 2007; Pascoal et al., 2005, Chen and Hung, 1993; Lee and Papadopoulou, 1993). To shorten the 
transmission time, the data can be transmitted through several disjoint minimal paths (MPs) simultaneously, in which a MP is 
a path whose proper subsets are no longer paths. For convenience, we concentrate on two MPs case in this paper. The 
proposed algorithm can then be easily extended to multiple MPs case. However, these literatures assume the nodes are perfect 
reliable. 

In the CCN, nodes play the role as servers/switches and they would be failure due to unexpectedly malfunction as well as 
edges. Therefore, all of the failure, maintenance action, and transmission time on nodes are needed to be considered as well. 
Aggarwal et al. (1975) proposed the concept that the failure of a node implies the failure of edges incident from it. Based on 
this concept, further related works modified the original network with node failure to be a conventional network with perfect 
nodes (Lin, 2001, 2004, 2007). Consider with node failure cases, we propose an algorithm to estimate the probability that the 
CCN can send d units of data from the cloud to the client under both maintenance budget B and time constraint T. Such a 
probability is named the maintenance reliability herein. That is, d, B, and T would be the main factors (or say decision variables) 
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to be controlled for obtaining the reasonable maintenance reliability and further sensitive analysis. A bounding approach is 
utilized to generate two sets of capacity vectors; {UB-MPs} and {LB-MPs}, where a UB-MP is the minimal capacity vector 
satisfying d and T while a LB-MP is the minimal capacity vector satisfying d, B, and T. The estimation of maintenance reliability 
is derived in terms of UB-MPs and LB-MPs by the Recursive Sum of Disjoint Products (RSDP) algorithm afterwards. 

 
2. MODEL FORMULATION AND MAINTENANCE RELIABILITY 

Notations 

Scloud  cloud node 
Sclient  client node 
n  number of edges 
r  number of nodes except for Scloud and Sclient 
E  {ei|i = 1, 2, …, n}: the set of edges 
N  {ei|i = n + 1, n + 2, …, n + r}: the set of nodes except for Scloud and Sclient 
ei  ith edge/node, i = 1, 2, …, n + r 
li  lead time of ei, i = 1, 2, …, n + r: transmission time required to pass through ei 
L  {li|i = 1, 2, …, n + r} 
ci  per unit maintenance cost of ei, i = 1, 2, …, n + r 
C  {ci|i = 1, 2, …, n + r} 
Wi  maximal capacity of ei, i = 1, 2, …, n + r 
xi  current capacity of ei where xi is a non-negative integer, i = 1, 2, …, n + r 
X  (x1, x2, …, xn+r): the capacity vector 
W  (W1, W2, …, Wn+r): the maximal capacity vector 
G  (N, E, C, L, W): a CCN 
k  number of MPs 
Pm  mth MP, m = 1, 2, …, k 
d  demand at Sclient 
ζ(d,X,Pm) transmission time to send d units of data through Pm under the capacity vector X, m = 1, 2 
x  smallest integer that is not less than x 
d1  assigned demand to first MP 
d2  assigned demand to second MP 
B  maintenance budget 
TC(X) total cost to maintain the edges from the state X 
Γ(d1,d2,X) the minimum transmission time to send d1 and d2 through P1 and P2, respectively, under the capacity vector X 
Λ(d,X) minimum transmission time to send d units of data under X 
T  time constraint 
MRUB upper bound of maintenance reliability 
MRLB lower bound of maintenance reliability 
MREX (exact) maintenance reliability 
ΦT  set of X satisfying d and T 
ΦUB   set of the minimal X satisfying d and T. ΦUB = {X|X is minimal in ΦT} 
ΦB   set of X satisfying d, B, and T 
ΦEX   set of the minimal X fulfilling d, B, and T. ΦEX = {X|X is minimal in ΦB} 
ΦLB   set of X ∈ ΦUB satisfying B. ΦLB = ΦUB\{Xj|TC(Xj) > B, Xj ∈ ΦUB} 
Xj  (xj1, xj2, …, xj(n+r)): the jth capacity vector 
h  number of UB-MPs 
Dv  {X|X ≥ Xv}: a subset of X, v = 1, 2, …, h 
 

Nomenclatures 

CCN  cloud computing network 
MP  minimal path 
QoS  quality of service 
RSDP recursive sum of disjoint products 
 
Vector operations are done according to the following rules: 
Y ≥ X  (y1, y2, …, yn+r) ≥ (x1, x2, …, xn+r): yi ≥ xi for each i = 1, 2, …, n + r; 
Y > X  (y1, y2, …, yn+r) > (x1, x2, …, xn+r): Y ≥ X and yi > xi for at least one i; 
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Y + X  (y1, y2, …, yn+r) + (x1, x2, …, xn+r) = (y1 + x1, y2 + x2, …, yn+r + xn+r). 
 
Assumptions 

1. The cloud node Scloud and the client node Sclient are perfectly reliable. 
2. The capacity of each edge/node is stochastic with a given probability distribution. 
3. The capacities of different edges/nodes are statistically independent. 
4. All data are transmitted through two disjoint MPs simultaneously. 

 
The maintenance cost is calculated in terms of the amount of capacity that each edge/node needs to be restored. The total 

cost to restore the edges/nodes in a CCN from the state X is 
 
TC(X) =

=
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−∑
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where −( )i i ic W x  is the maintenance cost for ei on any MP to recover from the current capacity xi to its highest capacity Wi. 
For instance, given the current capacity vector X = (1,0,1,1,0,0,1,1), the maximal capacity vector W = (3,3,3,1,2,4,5,4), and the 
unit maintenance cost C = (30,15,25,40,20,15,35,30). If x1, x3, x4, x7, and x8 are on the MPs, the total maintenance cost to 
restore from state X is TC(X) = c1(W1 – x1) + c3(W3 – x3) + c4(W4 – x4) + c7(W7 – x7) + c8(W8 – x8) = 30(3–1) + 25(3–1) + 40(1–1) 
+ 35(5–1) + 30(4–1) = 340. In particular, only the edges/nodes appearing in the MPs are necessary to be restored. The 
following constraint shows that the total maintenance cost can not exceed the budget B, 
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The maximal capacity of Pm is 
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x  is the maximum number of data units which can be transmitted through Pm per unit of time. The 

transmission time to send d units of data through Pm under the capacity vector X, ζ(d,X,Pm), is 
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If ζ(d,X,Pm) > T, it will contradict the time constraint. We have the following lemma showing the relationship between capacity 
vector and transmission time. 
Lemma 1. ζ(d,X,Pm) ≥ ζ(d,Y,Pm) for m = 1, 2, …, k if X < Y. 

Proof. If X < Y, then xi ≤ yi for each ei ∈ Pm, and 
∈ ∈
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. So ζ(d,X,Pm) ≥ ζ(d,Y,Pm).  

£ 
For the demand pair (d1,d2) assigned to two MPs P1 and P2, the minimum transmission time Γ(d1,d2,X) under X is 

 
Γ(d1,d2,X) = max{ζ(d1,X,P1), ζ(d2,X,P2)}.                     (4) 
 
That is, it spends at least Γ(d1,d2,X) unit of time to transmit d1 and d2 under the condition without delay or stagnation. Thus, the 
minimum transmission time to send d units of data under X is Λ(d,X) = 

+ =1 2 1 2 all ( , ):
min

d d d d d
{Γ(d1,d2,X)}. 

To estimate maintenance reliability, we calculate the interval estimation in terms of union of subsets. Different from the 
statistical inference, this interval certainly contains the maintenance reliability. Let ΦT be the set of the capacity vectors X 
satisfying d and T, and let ΦUB = {X|X is minimal in ΦT}. That is, ΦUB is the set of the minimal capacity vectors satisfying d 
and T. Hence, we can obtain the following definition.  
Definition 1: X ∈ ΦUB is called an UB-MP, equivalently, X is an UB-MP if and only if (i) Λ(d,X) ≤ T, and (ii) Λ(d,X) >T for 
any capacity vector Y with Y < X. 
Lemma 2. If X is a UB-MP, then Y ∈ ΦT for any Y > X. 
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Proof. Since X is a UB-MP, we obtain Λ(d,X) ≤ T. Lemma 1 says that ζ(d,Y,Pj) ≤ ζ(d,X,Pj) for any Y > X. Hence, 
max{ζ(d1,Y,P1), ζ(d2,Y,P2)} ≤ max{ζ(d1,X,P1), ζ(d2,X,P2)}, equivalently, Γ(d1,d2,Y) ≤ Γ(d1,d2,X). Then 

+ =1 2 1 2 all ( , ):
min

d d d d d
{Γ(d1,d2,Y)} ≤ 

+ =1 2 1 2 all ( , ):
min

d d d d d
{Γ(d1,d2,X)}. We conclude that Y ∈ ΦT by obtaining Λ(d,Y) ≤ Λ(d,X) ≤ T.   £ 

Lemma 2 shows that Pr{X|Λ(d,X) ≤ T} = Pr{X|X ≥ Xj for a UB-MP Xj}. Suppose X1, X2, …, Xh are all UB-MPs and thus 

MRUB can be represented as MRUB = Pr{X|X ∈ ΦB} = Pr{
=

U
1

h

v
v

D } where Dv = {X|X ≥ Xv}, v = 1, 2, …, h. Several methods 

such as RSDP algorithm (Zuo et al., 2007), inclusion-exclusion method (Hudson and Kapur, 1985; Lin, 2001, 2004, 2007, 2010; 
Xue, 1985), disjoint-event method (Hudson and Kapur, 1985; Yarlagadda and Hershey, 1991), and state-space decomposition 

(Alexopoulos, 1995; Aven, 1985; Jane et al., 1993), may be applied to compute Pr{
=

U
1

h

v
v

D }. The inclusion-exclusion method 

easily leads to overload in memory when the network size is large. The RSDP algorithm has a better computational efficiency 
than the state-space decomposition for a large network (Zuo et al., 2007). Hence, the RSDP algorithm is applied to derive 
maintenance reliability herein. 

However, the value MRUB would be an overestimated-solution since we do not check the maintenance budget in this case 
and UB-MPs may include some capacity vectors that exceed B. Thus, MRUB is an upper bound of maintenance reliability MREX, 
where MREX is defined as Pr{X|Λ(d,X) ≤ T and TC(X) ≤ B}. Let ΦB be the set of X fulfilling d, B, and T while ΦEX be the set 
of the minimal capacity vectors fulfilling d, B, and T. Therefore, ΦEX = {X|X is minimal in ΦB} and we have the following 
definition. 
Definition 2: X ∈ ΦEX is called an EX-MP, equivalently, X is an EX-MP if and only if (i) Λ(d,X) ≤ T, (ii) TC(X) ≤ B, and (iii) 
Λ(d,Y) > T or TC(Y) > B for any capacity vector Y with Y < X. 
Lemma 3. If X is an EX-MP, then Y ∈ ΦT for any Y > X. 
Proof. (i) Since X is an EX-MP, we obtain λ(d,X) ≤ T and TC(X) ≤ B. Lemma 1 says that ζ(d,Y,Pj) ≤ ζ(d,X,Pj) for any Y > X. 
max{ζ(d1,Y,P1), ζ(d2,Y,P2)} ≤ max{ζ(d1,X,P1), ζ(d2,X,P2)}, equivalently, Γ(d1,d2,Y) ≤ Γ(d1,d2,X). Then 

+ =1 2 1 2 all ( , ):
min

d d d d d
{Γd1,d2,Y)} ≤ 

+ =1 2 1 2 all ( , ):
min

d d d d d
{Γ(d1,d2,X)}. We conclude that Y ∈ ΦT by obtaining Λ(d,Y) ≤ Λ(d,X) ≤ T. 

(ii) Since Y > X, it implies that yi ≥ xi and −( )i iW y  ≤ −( )i iW x  for each ei. Then, 
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thus complete the proof by obtaining TC(Y) ≤ TC(X) ≤ B.  £ 
Lemma 3 shows that Pr{X|Λ(d,X) ≤ T and TC(X) ≤ B} = Pr{X|X ≥ Xj for an EX-MP Xj}. Intuitively, we may remove the 

unqualified Xj whose maintenance budged exceeds B from ΦUB to generate EX-MP. Nevertheless, deleting the Xj fulfilling 
time T but exceeding the maintenance budget B means that we also delete the set Dv = {X|X ≥ Xv} and results in that some 
X ≥ Xv fulfilling T and B are removed. For instance, given two UB-MPs where X1 = (1,1,0,0) and X2 = (0,0,2,1) satisfying T. 
Assume that W = (2,3,2,1) and C = (5,3,2,6), we can calculate the total maintenance cost TC(X1) = 21 and TC(X2) = 19 by 
equation (1). If the maintenance budget is 20, we will delete X1 whose maintenance cost is over the budget, and also D1 = 
{X|X ≥ X1}. In fact, there exists other capacity vectors that are larger than X1 and fulfill the budget, such as X3 = (2,1,0,0) 
with TC(X3) = 16 and X4 = (1,2,0,0) with TC(X4) = 18, where X3 and X4 may be EX-MPs. Besides, neither X3 nor X4 are 
included in the set D2 = {X|X ≥ X2}. However, it is complicated to list all EX-MPs so that we have the following statement 
to find a lower bound of maintenance reliability. 
Definition 3: Each capacity vector X ∈ ΦLB is called a LB-MP, where ΦLB = ΦUB\{Xj|TC(Xj) > B, Xj ∈ ΦUB}. Equivalently, 
X is a LB-MP if and only if (i) X ∈ ΦUB, and (ii) TC(X) ≤ B. 

Definition 3 implies that ΦLB is a subset of ΦUB, where each X satisfies the maintenance budget B. However, some X 
satisfying maintenance budget may be neglected if we delete the unqualified Xj (i.e., TC(Xj) > B) and thus Dv = {X|X ≥ Xv} is 
also removed. Thus, the value MRLB ≡ Pr{X|X ≥ Xj for a LB-MP Xj} is a lower bound of maintenance reliability. The interval 
(MRLB, MRUB) certainly contain MREX. 
  
3. THE PROPOSED ALGORITHM 

3.1 The algorithm to generate UB-MPs and LB-MP 

All UB-MPs and LB-MPs can be generated by the following steps.  
Step 0. [Initialization] Set ΦUB = ∅, ΦLB = ∅, and j = 0. 
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Step 1. Find the largest assigned demands 1d  and 2d  such that 
∈
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respectively. 

Step 2. [Generation of feasible demand pairs] Generate all non-negative integer solutions of d1 + d2 = d where d1 ≤ 1d  and d2 

≤ 2d . 
Step 3. [Generation of UB-MPs] For each demand pair (d1,d2), do the following steps. 

3.1 Find the minimal capacity v1 (resp. v2) of P1 (resp. P2) such that d1 (resp. d2) units of data can be sent through P1 (resp. 
P2) under T. That is, find the smallest integer v1 and v2 such that 
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3.2 j = j + 1. Xj = (x1, x2, …, xn+r) is obtained according to 
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3.3 For w = 1 to j – 1, if Xj ≥ Xw, then go to step 3.5; if Xj < Xw, then ΦUB = ΦUB\Xw. 
3.4 ΦUB = ΦUB ∪ {Xj}. 
3.5 Next (d1,d2). 

Step 4. [Generation of LB-MPs] Set ΦLB = ΦUB. For each Xj ∈ ΦLB, do the following steps. 
4.1 Find the maintenance cost TC(Xj) =

=
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4.2 If TC(Xj) > B, ΦLB = ΦLB\Xj. 
4.3 Next Xj ∈ ΦLB. 

Step 5. Two sets, ΦUB and ΦLB are generated. 
 
Lemma 4. The set of UB-MPs is the set of X generated from the proposed algorithm. 
Proof. We first claim that every obtained Xj from the algorithm is a UB -MP. Suppose Xj is not an UB-MP, then there exists 
an UB-MP Y = (y1, y2, …, yn) such that Y < Xj. Without loss of generality, we assume an arc eu ∈ P1 such that yu < xu. It is known 

that xu is the minimal capacity of eu such that xu ≥ v1. The situation yu < xu results in that yu < v1 and 
∈

+
 
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∑
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i
i e P

d
l

v
> T. It 

contradicts that Y is an UB -MP. Hence, Xj is an UB-MP. 
Conversely, we claim that every UB-MP is generated from the algorithm. Let X be a UB -MP. Suppose {X1, X2, …, Xw} is 

the set of X generated from the algorithm, and X ∉ {X1, X2, …, Xw}. Without loss of generality, there exists an arc ei ∉ P1 ∪ 
P2 such that xi > 0. Set Y = (x1, x2, …, xi – z, …, xn), where (xi – z) is the maximal capacity of ei such that (xi – z) < xi. Then 
ζ(d,Y,P1) ≤ T and ζ(d,Y,P2) ≤ T. That contradicts that X is an UB-MP. Hence, any UB-MP belongs to {X1, X2, …, Xw}. We 
conclude that {UB-MPs} is the set of X generated from the algorithm.  £ 
 

3.2 The RSDP algorithm 

The RSDP algorithm is a recursive algorithm combined by the sum of disjoint product principle (Zuo et al., 2007). In this 
algorithm, a maximum operator, “⊕”, is defined as 
 
X1,2 = X1 ⊕ X2 ≡ (max(x1i, x2i))      for i = 1, 2, …, n + r.                                         (7) 
 
For example, suppose that two UB-MPs, X1 = (1, 0, 1, 1, 0, 0, 1, 1) and X2 = (0, 0, 3, 0, 0, 0, 3, 3). By equation (7), X1,2 = X1 
⊕ X2 = (max(1, 0), max(0, 0), max(1, 3), max(1, 0), max(0, 0), max(0, 0), max(1, 3), max(1, 3)) = (1, 0, 1, 1, 0, 0, 3, 3). The RSDP 
algorithm is presented as the following pseudo codes. 
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RSDP algorithm //Compute maintenance reliability R = Pr{
=

U
1

h

v
v

D } 

function NR = RSDP(X1, X2, …, Xh) //Input h capacity vectors 
for i = 1 : h 

if i == 1 
NR = Pr(X ≥ Xi); 

else 
TempNR_1 = Pr(X ≥ Xi); 
if i == 2 

TempNR_2 = Pr(X ≥ max(X1, Xi)); //max(X1, Xi) = (X1⊕Xi) 
else 
 for j = 1 : i – 1 
  Xj = max(Xj, Xi); //max(Xj, Xi)= (Xj, Xi) 
 end 
 h = h – 1 
 TempNR_2 = RSDP(X1, X2, …, Xh); //Execute recursive procedure 
end 

end 
NR = NR + TempNR_1 – TempNR_2; //Return NR 
 

4. AN ILLUSTRATIVE EXAMPLE 

We use a benchmark CCN (Chen and Hung, 1993, 1994; Chen and Chin, 1990) with 8 edges and 3 failure nodes shown in 
Figure 1 to illustrate the solution process. In this example, each edge is combined with several OC-18 (Optical Carrier 18) lines 
and each line provides two capacities, 1Gbps (giga bits per second) and 0 bps. Since the lines are provided by different 
suppliers, the edge’s capacity has different probability distribution. The capacity, lead time, and per unit maintenance cost of 
each edge are shown in Table 1. 

 

 

Figure 1 A benchmark CCN. 

 
Table 1. The edge/nodea data of Figure 2. 

capacity (Gbps) edge cost lead time 
(sec) 0 1 2 3 4 5 

e1 30 2 0.102503  0.349562  0.397366  0.150569  0.000000 b 0.000000  
e2 15 1 0.002744  0.050568  0.310632  0.636056  0.000000  0.000000  
e3 25 3 0.000001  0.000297  0.029403  0.970299  0.000000  0.000000  
e4 40 3 0.468000  0.532000  0.000000  0.000000  0.000000  0.000000  
e5 20 1 0.014400  0.211200  0.774400  0.000000  0.000000  0.000000  
e6 15 2 0.018340  0.125985  0.324550  0.371586  0.159540  0.000000  
e7 35 2 0.000054  0.001652  0.020295  0.124667  0.382906  0.470427  
e8 30 1 0.000207  0.006083  0.066908  0.327107  0.599695  0.000000  
e9 40 2 0.219024  0.497952  0.283024  0.000000  0.000000  0.000000  
e10 25 1 0.000001  0.000297  0.029403  0.970299  0.000000  0.000000  
e11 25 1 0.000001  0.000297  0.029403  0.970299  0.000000  0.000000  

a e1 to e8 for edges; e9 to e11 for nodes. 
b The edge does not provide this capacity. 
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In this example, the cloud have to send 5 Gbps data to the client through P1 = {e1, e9, e4} and P2 = {e3, e10, e7, e11, e8} 
simultaneously within 10 seconds and under maintenance budget 450. It implies that the CCN is falling to the failed state when 
the capacity level is less than 5 Gbps. The estimated and exact maintenance reliabilities are derived as follows. 
Step 0. Set ΦUB = ∅, ΦLB = ∅, and j = 0. 

Step 1. The largest demand 1d  such that (l1 + l9 + l4) + 
 
 
 

1

1 9 4min{ , , }

d

W W W
 ≤ 10 is 1d  = 3. The largest demand 2d  such 

that (l3 + l10 + l7 + l11 + l8) +
 
 
 

2

3 10 7 11 8min{ , , , , }

d

W W W W W
 ≤ 10 is 2d  = 6. 

Step 2. Generate all non-negative integer solutions of d1 + d2 = 5 where d1 ≤ 1d and d2 ≤ 2d . The feasible (d1,d2) are (3,2), (2,3), 
(1,4), and (0,5). 

Step 3. For (d1,d2) = (3,2), do the following steps. 

3.1 The lead time of P1 is l1 + l9 + l4 = 7. Then v1 = 1 is the smallest integer such that (7 +
 
  1

3

v
) ≤ 10. Similarly, the lead 

time of P2 is l3 + l10 + l7 + l11 + l8 = 8. Then v2 = 1 is the smallest integer such that (8 +
 
  2

2

v
) ≤ 10. 

3.2 X1 = (x1, x2, x3, x4, x5, x6, x7, x9, x10, x11) = (1,0,1,1,0,0,1,1,1,1,1). 
3.4 ΦUB = ΦUB ∪ {X1} = {X1}. 
3.5 Next (d1,d2). 
M  

3.4 ΦUB = {X1, X4}.The results are shown in Table 2. 
Step 4. Set ΦLB = ΦUB = {X1, X4} and do the following steps. 

4.1 For X1, TC(X1) = 30(3–1) + 25(3–1) + 40(1–1) + 35(5–1) + 30(4–1) + 40(2–1) + 25(3–1) + 25(3–1) = 480. 
4.2 Since TC(X1) = 480 > B = 450, ΦLB = ΦLB\X1 = {X4}. 
4.1a For X4, TC(X4) = 30(3–0) + 25(3–3) + 40(1–0) + 35(5–3) + 30(4–3) + 40(2–0) + 25(3–3) + 25(3–3) = 310. 
4.2a TC(X4) = 310 ≤ B = 450, we do not remove X4 from ΦLB. 
M  
The results concluded in Table 2 show that ΦLB = {X4}. 

Step 5. ΦUB = {X1, X4} and ΦLB = {X4}. 
After executing the proposed algorithm, the results summarized in Table 2 show that ΦUB = {X1, X4}, and ΦLB = {X4}. By 

the RSDP algorithm, we subsequently obtain the interval (MRUB, MRLB) = (0.891942791659912, 0.828023320538282) which 
contains MREX. 

 
Table 2. Results of steps 3 and 4 in example. 

(d1,d2) (v1,v2) X Xj ∈ ΦUB 
or not 

Total Cost Xj ∈ ΦLB 
or not 

Remark 

(3,2) (1,1) X1 = (1,0,1,1,0,0,1,1,1,1,1) Yes 480 No exceed budget 

(2,3) (1,2) X2 = (1,0,2,1,0,0,2,2,1,2,2) No - - X2 > X1 

(1,4) (1,2) X3 = (1,0,2,1,0,0,2,2,1,2,2) No - - X3 > X1 

(0,5) (0,3) X4 = (0,0,3,0,0,0,3,3,0,3,3) Yes 310 Yes - 

 
5. COMPUTATIONAL COMPLEXITY 

Computational complexity of the proposed algorithm in section 3.1 is analyzed as follows. In step 1, it takes at most O(n + 

r) time to find the largest assigned demands 1d  and 2d . In step 2, there are at most (d + 1) solution of d1 + d2 = d. For each 
(d1,d2), it takes at most O(n + r) time to test time constraint (steps 3.1) and transform to X (step 3.2). The set ΦUB contains at 
most (d + 1) elements. Hence, each Xj needs O(d(n + r)) time to compare with other X in the worst case, and step 3 needs 
O(d2(n + r)) time to all UB-MPs. Step 4 subsequently spends O(n + r) time to check the budget constraint and to obtain 
LB-MPs in the worst case. In sum, it takes at most O(d2(n + r)) time to execute the proposed algorithm. Hence, the 
computational time is linear with the number of edges and nodes, and is linear with the square of number of demand.  

 
6. SUMMARY 
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When a CCN falls to the failed state where it cannot provide enough capacity to satisfy client ’s requirements, the 
maintenance action should be taken on each edge/node for keeping a good QoS. Moreover, the transmission time that data 
sent from the cloud to the client is also an important issue to be concerned. With nodes failure, we construct a network model 
to describe the flows and capacities in terms of minimal paths. We treat the maintenance reliability as a performance index and 
thus a bounding approach is developed to derive the estimated maintenance reliability. In particular, the LB-MPs are obtained 
from UB-MPs easily and efficiently by checking a maintenance budget constraint. The lower bound MRLB can also be 
determined from the steps of deriving MRUB since ΦUB ⊇ ΦLB. Thus, it is unnecessary to take additional steps for computing 
MRLB but getting it in part of the steps of evaluating MRUB. Based on the maintenance reliability, the system supervisors can 
conduct the sensitive analysis to improve/investigate the most important part in a large CCN. 
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