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Abstract Simulation and optimization are two arguably most used operations research (OR) tools. Optimization intends to 

choose the best element from some set of available alternatives. Stochastic simulation is a powerful modeling and software tool 

for analyzing modern complex systems. This capability complements the inherent limitation of traditional optimization, so the 

combining use of simulation and optimization is growing in popularity.  While the advance of new technology has dramatically 

increased computational power, efficiency is still a big concern because many simulation replications are required for each 

performance evaluation. Optimal Computing Budget Allocation (OCBA) algorithms have been developed to address such an 

efficiency issue with emphasis given on those aiming to maximize the probability of correct selection or other measures of 

selection quality given a limited computing budget. In this paper, we present a comprehensive survey on OCBA approaches 

for various simulation optimization problems together with the open challenges for future research.   

KeywordsOptimization; Discrete-event simulation; Simulation optimization; Ranking and selection; Computing budget 

allocation. 

 

 

1. INTRODUCTION 

There are two challenges in simulation optimization. One is to optimize or to find the best system or design where the 

number of alternatives may be huge. Due to uncertainties and dynamic relationships between the parts involved, many 

problems are too complex to be evaluated analytically. Therefore, the second challenge is to estimate the performance 

measures via simulation which is computationally intensive as multiple simulation replications are required for each alternative. 

The simulation optimization problems have been widely studied. Many excellent reviews are available (Andradóttir, 1998; 

Fu, 2002; Fu et al., 2008, Hong and Nelson, 2009; Swisher et al., 2003; Tekin and Sabuncuoglu, 2004).  Some of the approaches 

include metamodeling, sample average approximation, and gradient-based method. However, these methods may not be 

applicable when some of decision variables are discrete and the structure of the problems is unknown. Another alternative is 

the use of derivative-free, black-box simulation. When the number of alternatives to be selected is fixed, the problem comes 

down to a statistical selection problem called as Ranking and Selection.  

The aim of ranking and selection procedures is to determine the number of simulation replications in selecting the best 

design. There are also a vast number of literatures on ranking and selection (Bechhofer et al., 1995; Goldsman and Nelson 

1998; Kim and Nelson, 2003; Kim and Nelson, 2006; Kim and Nelson, 2007; Chick and Inoue, 2001ab; Branke et al., 2007). 

There are mainly two approaches. The first approach is to guarantee a desired probability of correct selection such as two-stage 

procedures by Dudewicz and Dalal (1975) and Rinott (1978), the two-stage procedure with screening by Nelson et al. (2001) or 

the fully-sequential procedure by Kim and Nelson (2001). In their procedures, a difference is considered significant if it is 

larger than a specified parameter or otherwise the decision maker is indifferent. Therefore, they are called as Indifference-zone 

(IZ) procedures.  

Another popular approach is to maximize the probability of correct selection (PCS) given a computing budget called as 

Optimal Computing Budget Allocation (OCBA). Table 1 provides the key differences between IZ and OCBA approaches. For 

empirical comparison of the performance, see Branke et al. (2007) and Inoue et al. (1999). As simulation which is time 

consuming is used to estimate the performance measure, efficiency becomes a key issue. OCBA focuses on the efficiency issue 

by intelligently controlling the number of simulation replications based on the mean and variance information. Intuitively, to 
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ensure a high probability of correctly selecting the desired optimal designs, a larger portion of the computing budget should be 

allocated to those designs that are critical in identifying the necessary ordinal relationships. The questions on how to identify 

the critical designs and how to allocate to critical and non-critical designs arise. It turns out that the answer actually depends on 

specific problem settings. We use a simple example to illustrate the ideas (Chen et al., 2008a). Figure 1(a) shows the 99% 

confidence intervals in a trivial case with 5 designs after initial simulation replications are performed. Given that the objective 

is to minimize cost, it is intuitive that design 1, 4, and 5 should not receive further simulation replications as they are clearly 

worse than design 2 and 3. In most cases such as the one shown in Figure 1(b), it is difficult to determine which designs to be 

further simulated and the amount of additional simulation replications to be made. OCBA therefore plays an important role in 

addressing these questions.  

The focus of the paper is to specifically review the main idea from Chen et al. (2008a) and Chen and Lee (2010) together 

with various extensions of OCBA and recent advances in OCBA research. The basics of OCBA are provided in the next 

section. Section 3 provides an overview of the different extensions of OCBA while Section 4 describes the application of 

OCBA in the real-world problem and its integration with search algorithm. The open challenges for future OCBA research are 

discussed in Section 5. Section 6 concludes this paper. 

 

Table 1. Key differences between OCBA and IZ procedures 

Basis of Comparison OCBA IZ 

Focus Efficiency (maximizing PCS) 
Feasibility (finding a feasible way to 
guarantee PCS) 

Total number of 
simulation replications 

required 

Equal to the computing budget which is set 
by the decision maker 

Uncertain (it depends on when the stopping 
rule to guarantee PCS is met) 

Value of PCS achieved 

The actual PCS is unknown. However, it is 
also possible to guarantee PCS as long as 
the value of Approximate PCS (APCS) is 
greater than the desired PCS. (Note that 
APCS is easy to compute)  

The desired PCS is guaranteed to be 
achieved. The actual PCS is unknown and it 
is usually much higher than the desired PCS 
as the procedure is developed based on the 
least favorable configuration 

Assumptions Both Bayesian and Frequentist view  Based on Frequentist view 

Use of 
indifference-zone 
concept in making 

comparison 

Does not incorporate the indifference-zone 
concept except in Teng et al. (2010) 

Always incorporate the notion of 
indifference zone 

Flexibility for alternative 
formulation 

Easy to incorporate other objective than 
PCS such as minimizing opportunity cost 

It is more difficult to develop stopping rule 
to guarantee other objective than PCS 

 

 

Figure 1. Illustration of 99% confidence intervals after some preliminary simulation in  

(a) a trivial case and (b) a more common case  

 

2. BASICS OF OPTIMAL COMPUTING BUDGET ALLOCATION 

The computing budget allocation problem falls into the traditional ranking and selection settings where ranking and 

selection is usually conducted based on the observed sample mean. Due to the underlying uncertainty with sampling, the 

selection result is not deterministic and probably varies. It is therefore necessary to establish the proper measurement of 

selection quality, which is highly depending on the decision makers’ preference or on the specific interest with the problem 
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domain. Then the computing budget allocation problem can be generally formulated as an optimization problem aiming to 

find the optimal allocation scheme, such that 1) the selection quality can be optimized under limited computing budget 

available, or 2) least computing budget would be needed to maintain the selection quality at a desired level. However, focusing 

only on the decision variables, or on the allocation scheme, the two types of formulation is indifferent (Chen et al. 2000a, Chen 

and Yücesan 2005) and only the first formulation will be discussed in the following text. 

Common assumptions are usually made to make the evaluation of selection quality tractable. For the simulated systems, 

studies conducted usually assume implicitly that the steady state of the simulation system can be achieved with each run. 

However, the transient state of simulation systems may be of interest and sometimes is the only information available (Morrice 

et al., 2008, 2009). Another commonly made assumption is the independently and normally distributed observation applying to 

each individual design. This assumption is partially justified by the Law of Large Numbers, where the batch mean can be used 

as a single observation. Another commonly employed assumption is the equal unit cost with each simulation run under 

different designs, such that the computing budget can be simply interpreted as the total number of simulations totally available. 

For the case when computing time for one single run is different across the alternatives, see Chen et al. (1998) and Chen and 

Lee (2010). In addition, the concept from ordinal optimization is also generally used, based on which approximating relative 

order between alternatives is easier than estimating the performance measures accurately. For works with closer association 

with ordinal optimization, see Chen et al. (2000b), Chen et al. (2006), Dai (1996), Dai and Chen (1997), Dai et al. (2000), Ho et 

al. (2000), Lee et al. (1999), and Teng et al. (2007). 

The most frequently used measurement of selection quality is the probability of correct selection, which treats correctly 

selecting the desired designs as a random event and measures the probability of such event. There are two different points of 

view on defining such a probability. From the frequentist’s perspective, the true responses (mean and variance with given 

distribution) for each design are assumed known, and the problem is then formulated as to find the optimal computing budget 

allocation scheme based on the true information, such that the desired designs can be selected based on observation with the 

highest probability. On the other hand, the problem can also be considered from the traditional Bayesian point of view, where 

the true responses are assumed unknown and estimated by sample information, and the probability is defined as the 

probability that the selected designs are actually the desired ones. Let k  be the number of designs, iN  be the number of 

simulation replications for design i , and T  be the total computing budget. Without loss of generality, the problem can be 

formulated as 
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       0
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For evaluation of probability of correct selection, there is usually no mathematically closed form expression and a proper 

lower bound of it is used instead as the objective. The Karush-Kuhn-Tucker (KKT) conditions can then be applied to the 

formulation above and the optimality conditions can be derived. However, due to complexity in expressing PCS, direct 

solution from the KKT conditions is still intractable. Multiple versions of the lower bound have been developed attempting to 

achieve an easily derived expression of probability (Chen, 1996), and a variety of heuristics, the gradient search method, for 

instance, have been investigated to find the optimal solution (Chen, 1995; Chen et al., 1996; Chen et al., 1997). The allocation 

scheme derived in these papers is shown to be efficient. However, it is still not able to show optimality and intelligence or the 

underlying knowledge is not adequately interpreted. Chen et al. (1999b) and Chen et al. (2000a) firstly introduce the asymptotic 

OCBA framework by assuming that the total computing budget is infinite. Based on such a framework, the derivation based 

on KKT conditions can be simplified using limit theory and the optimal solutions can be derived under mild conditions. The 

optimal solution developed also provides evident insight in interpretation of the allocation rule. Let i iN T , design b  be 

the best design,  2

i  be the variance for design i , i  be the mean of design i , and    ,b i i b . Based on the work by Chen 

et al. (2000a), PCS is asymptotically maximized when the relationship between two non-best design i  and j ,  i j b  is  
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and the number of simulation replications for the best design is given as  
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It shows that the noisier the simulation output, the more replications are allocated. More replications are also given to the 

design of which mean is closer to that of the best design.    

Moreover, given that each design will be allocated infinitely often under the asymptotic framework, it also validates the 

assumption of Gaussian distributions by Law of Large Numbers, without assuming using batch analysis. The asymptotic 

assumption also implies the convergence of the two allocation schemes derived from either frequentist’ perspective or 

Bayesian perspective, as when the design is simulated for infinite times, the sample mean would actually converge to its true 

value almost surely, which would lead to the convergence of the Bayesian allocation scheme to the frequentist’s one. 

Alternative measures of selection quality are also widely developed. Trailovic and Pao (2004) attempt to minimize variance. 

Another important measure of selection quality is the expected opportunity cost, which penalizes particularly bad choices 

more than mildly bad choices (Chick and Wu, 2005; He et al. 2007). It can be seen that these alternative measures are also 

dependent on the correct (or incorrect, which is complement) selection result. In this paper, we focus mainly on the 

measurement using PCS. 

The effectiveness of OCBA in saving computing budget is illustrated in Table 2 which is directly taken from Chapter 4 in 

Chen and Lee (2010). It provides two measures of OCBA performance relative to Equal Allocation (EA). EA is often used in 

simulation studies for comparing alternatives. It basically divides the computing budget equally across all designs. The first 

measure is called as speedup factor. It shows how fast OCBA relative to EA in reaching the same value of PCS, in this case 

99% PCS is used. Let OCBAT  and EAT  be the computing budget for reaching 99% PCS. The speedup factor would then be 

equal to EA OCBAT T . For example when there are 10 designs, Table 2 shows that OCBA is 3.40 faster than EA. It is also shown 

that the savings of using OCBA instead of EA indicated by the speedup factor increases when the number of designs is 
increased. The second measure is called as Equivalent Number of Alternatives with a Fixed Computing Budget, ENAFCB( k ). 

This is equal to the number of designs divided by the speedup factor. The purpose of ENAFCB( k ) is to show the number of 

designs that can be simulated using EA given the computing budget needed by OCBA to simulate k  number of designs. For 

example, ENAFCB(100) is 4.99 meaning that OCBA is able to simulate 100 designs by only spending the same effort needed 

by EA to simulate less than 5 alternatives. The results show the potential of OCBA in enhancing the efficiency in simulation 

optimization. From the perspective of the first measure, OCBA requires less computing budget than EA to reach the same 

value of PCS. The second measure gives another angle to look at the advantage of OCBA that it is able to simulate more 

designs given the same computing budget.  

 

Table 2. Illustration of the performance of OCBA compared to EA 

Number of designs, k  5 10 25 50 75 100 

Speedup factor using OCBA 2.08 3.40 7.86 12.69 16.50 20.05 

ENAFCB ( k ) 2.40 2.94 3.18 3.94 4.55 4.99 

  

In the simulation practice, the simulation budget is usually allocated in a sequential approach as follows:  

 

INPUT:  

number of designs, total computing budget, initial number of replications, increment in each iteration 

INITIALIZE:  

Initial number of replications for each alternative is performed 

LOOP: WHILE the total number of replications conducted so far is less than the total computing budget, DO: 

     UPDATE:  

     Calculate sample mean and variance; determine the best design based on the sample mean 

     ALLOCATE:  

Add increment to the total replications conducted so far and determine the new number of replications for each 

alternative based on the OCBA rule and compute the additional replications that need to be conducted for each 

alternative. 

    SIMULATE:  

    Perform the additional number of replications for each alternative 

END OF LOOP 

 

For discussions on the choice of the initial number of replications and the increment, see Chen et al. (2008b), Chen et al. 

(2010), and Law and Kelton (2000). 

 

3. ALLOCATION RULES FOR DIFFERENT SIMULATION OPTIMIZATION PROBLEMS 

Problems may distinct from each other by various specifications. From the ranking and selection perspective, ranking of the 

simulated designs may vary depending on the following characteristics of a specific problem: 
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a) Ranking criteria: objectives and constraints 

For the problem considered, it is usually aimed to find the design(s) that possess the optimality. However, under certain 

circumstances, feasibility of the designs may also be taken into consideration and such concerns would be formulated as 

specific constraints with the OCBA problem. 

b) Number of objectives: single or multiple 

Ranking of designs with only one objective is mostly intuitive by directly comparing their cardinal sample mean. However, 

for designs evaluated with multiple objectives, the direct cardinal comparison is not applicable as designs may be competing at 

different objectives. The transformation approach which reduces the problem into a single objective one by weighted average 

is indifferent from the basic single objectives problems, and it may not fully capture the problem structure due to the lack of 

preference over the objectives. The concept of Pareto optimality is employed instead, where the goodness of a design is 

measured in terms of domination. It should be noted that there are studies on duality between single objective problems with 

constraints and multi-objective problems without constraint. However, such duality is not completely equivalent and is not 

considered in the asymptotic OCBA framework. Moreover, ordinal comparison, rather than simulation precision, of the 

objective(s) with each design is of interest. 

c) Selection target 

For single objective problems, each design can be uniquely ranked, and the single best design is the most common target of 

selection for single objective problems with or without constraints.  Alternative selection target involves the optimal subset 

containing top m designs, which is also distinct for single objective problems.  For multi-objective problems, however, there is 

usually no single best design or exact top m designs since multiple designs may probably share the same rank and cannot be 

differentiated. Thus the Pareto set, pS , containing all the non-dominating designs and the non-Pareto set, pS , containing all 

the dominated designs can be assessed. In general, either for single objective problems or multi-objective ones, the selection 

target can be generally those designs with their ranks up to a certain level, where, for instance, the top m designs are those with 
their ranks less than or equal to m (assuming that ranks start from 1), and when  1m , the selection target reduces to the single 
best. For multi-objective problems, the selection target is also those designs with ranks up to a certain level, say  , and when 

  0  (assuming that ranks start from 0 here), the selection target would reduce to the Pareto set. 

d) Measurement of selection quality: Probability of Correct Selection 

Evaluation of the probability of correct selection depends on the underlying distributions of the sampled data, where only 

Gaussian distributions are discussed in this paper. The probability of correct selection depends on the sampling correlation 

among designs; and additionally, for multi-objective problems, the probability also depends on the sampling correlation 

among different objectives.   

 

Under the asymptotic OCBA framework, the following problems are studied with the common assumption of normally 

distributed but non-correlated samples, which are summarized as follow: 

OCBA1: single objective problem without constraints, aiming to select the single best design (Chen et al. (2000a) 

OCBA-m: single objective problem without constraints, aiming to select top m designs (Chen et al. 2007; Chen et al. 2008b) 

OCBA-CO: single objective problem with one stochastic constraint, aiming to select the best feasible design (Pujowidianto et 

al. 2009) 

MOCBA: multi-objective problem without constraints, aiming to select the Pareto set (Lee et al., 2004; Chen and Lee, 2009; 

Lee et al., 2010) 

The optimal budget allocated to each design in the asymptotic OCBA framework is as follows: 
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where the corresponding values of  i  are shown in Table 3. Note that 1OCBA

iw , MOCBA

iw , OCBA CO

iw , OCBA m

iw  are the weights of 

the replications of design i’s to the replications allocated to the selected design(s) in different OCBA procedures.  For example, 

in OCBA1, where s is the best design, 
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 1OCBA

i , MOCBA

i ,  OCBA CO

i ,  OCBA m

i  are the noise-to-signal ratio of design i in different OCBA procedures. The 

noise-to-signal ratio indicates how likely an incorrect decision is made. The higher the ratio of a non-desired design, the more 

chance it is to be incorrectly selected as the desired designs. The noise refers to the uncertainty in the performance measure(s) 

while the signal of a non-desired design measures its distance to the desired designs. Therefore, the insight from this ratio is 
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that we should allocate more replications to the non-desired designs with greater noise or smaller signal to minimize the 

probability of incorrect selection. For illustration purpose, the following is the noise-to-signal ratio in OCBA1, 
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1OCBA i
i

i s

.                                                                                                                                                           (6) 
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i , OCBA CO
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i  also have the similar expression, namely the ratio of standard deviation to the sample means’ 

difference, but they are a little different due to different problems. For detailed expressions of MOCBA

iw , OCBA CO

iw , OCBA m

iw , 

MOCBA

i , OCBA CO

i , OCBA m

i , please refer to  Lee et al. (2004, 2010), Pujowidianto et al. (2009) and Chen et al. (2008b). 

 

Table 3. Allocation schemes for various problems 
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2
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It can be seen from Table 3 that the allocation schemes for various problems share some common properties. First, it is 

necessary to distinguish the type of comparisons that is incurred to each design, which is critical in identifying whether the 

design is desired (optimal) or not. There are two types of comparison in general, i.e. individual comparison with each design, or 

multiple comparisons with a certain design. Individual comparison means that a certain design is only compared with a certain 

value or some other design once, and then the allocation related to this design can be determined accordingly. Multiple 

comparisons are related to a certain design where the goodness of the design can only be determined by comparing with 

several other designs. For instance, for the OCBA1 problem, the best design should be compared with all other designs to 

determine its superiority, and thus multiple comparisons are incurred with it, whereas for all designs other than the best, it is 

only necessary for them to compare with the best design to show their inferiority, and thus individual comparison is incurred 

with each design.   

It should be noted that identification of comparison types may not be straightforward for complicated problems. For 

instance, for multi-objectives problems, because of the underlying complexity in cross comparisons of designs, all designs can 

be grouped by the roles they are playing, either dominating or being dominated. For designs playing the role of dominating, 
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each of them is dominating multiple designs, and thus multiple comparisons are incurred; for designs playing the role of being 

dominated, each design is only dominated by one design, and hence the individual comparison is incurred.  

In general, for designs with individual comparison, the related allocation would follow the noise-to-signal ratio scheme, 

which in the statistical sense, is critical in identifying the significant difference from one value to the other; whereas for designs 

with multiple comparisons, the related allocation would follow the sum of weighted variance scheme, where the variance 

would rule out the comparisons for significant differences. It should be noted that the noise-to-signal ratio scheme follows the 

assumption of Gaussian distributions, where the ratio represents the exponent of the probability density function of Gaussian 

distributions, and plays the role of convergence rate with regard to the probability of comparison result.  

Both the OCBA procedures for single objective and multi-objective problems have been extended in several ways. Table 4 

lists the works extending OCBA for single objective while that for multi-objective are provided in Table 5. For instance, the 

extensions consider the correlation between the designs (Fu et al., 2004, 2007) or use non-normal distributions (Glynn and 

Juneja, 2004) which will make the formulation of PCS to be different and consequently affecting the optimal allocation rules. 

Other extensions that have been made are to combine OCBA with regression (Brantley et al., 2008) or splitting (Shortle and 

Chen, 2008). Combining OCBA and regression will also result in different PCS. Splitting is combined with OCBA when the 

problem is to evaluate rare-event probabilities. In this case, the decision variable becomes the number of simulation replication 

for each design in each splitting level while the objective is changed to minimize the variance of the rare-event probability 

estimator.   

 

Table 4. Literatures extending OCBA for single objective 

References Extensions made to OCBA 

Brantley et al. (2008) 
Incorporate regression analysis which can utilize the information from the 

underlying function 

Chen et al. (2003b) Introduce minor random perturbation to the original OCBA 

Chick et al. (2010) Develop a sequential one-step myopic allocation procedure 

Frazier and Powell (2008) Consider the problem with a correlated multivariate normal prior belief 

Fu et al. (2004, 2007) Account for correlation between designs 

Glynn and Juneja (2004) Address performance measure that is not normally distributed 

Morrice et al. (2008, 2009) Deal with transient mean that is a function of other variable such as time 

Shortle and Chen (2008) Deal with rare event simulation by minimizing variance of its estimator 

 

Table 5. Literatures extending OCBA for multi-objectives 

References Extensions made to MOCBA 

Lee et al. (2007) Minimize expected opportunity cost 

Branke and Gamer (2007) 
Transform multiple objectives into single objective with ability to interactively 

update the weight distribution 

Teng et al. (2010) Incorporate the indifference-zone concept 

 

4. OCBA APPLICATIONS AND INTEGRATION WITH SEARCH ALGORITHMS 

Because of their well performance to get a high confidence level under certain computing budget constraint, OCBA 

procedures show great potential in improving simulation efficiency for tackling simulation optimization problems, finding or 

selecting the best solutions for a system in which the performance of solutions is evaluated based on the output of the 

simulation model of this system. Therefore, the application of OCBA procedures is studied by many researchers. The 

application can be classified by different ways in which OCBA is applied. For the simulation optimization problems given a 

fixed set of alternatives, OCBA can be directly applied to select the optimal one among all these solutions. For the simulation 

optimization problems with enormous size or continuous solution space, the application of OCBA is indirect by integrating it 

with search algorithms. 

 

4.1 Direct application of OCBA to simulation optimization problems 

In real industry, facing with the competitive and fast-changing business environment, companies focus on enhancing their 

core competence and strengthening the corporation with other related companies. The improvement on companies’ own 

manufacturing and service operations and the constantly expanding information, economic and trade exchange and 

cooperation among companies bring on the increasing complexity of companies’ networks. Many problems in such large, 

complex, and stochastic networks are large scaled, without an analytical structure of the problem, and with high uncertainties. 

For example, the product design problems, operation scheduling problems and vehicle routing problems all belong to the 

combinatorial optimization problems and their structures all change dynamically.  

With these difficulties, traditional simulation approaches usually cannot handle these problems because of the high 

computational cost. On the other side, OCBA can effectively reduce computing cost by intelligently determining the number 
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of simulation replications to different designs and shows superiority over ordinal optimization which has exponential 

convergence rate under certain conditions. 

Therefore, OCBA provides us an effective way to solve these difficult operation problems, such as the combinatorial 

optimization problems which include machine clustering problems (Chen et al., 1999a), electronic circuit design problems 

(Chen et al., 2003a), semiconductor wafer fab scheduling problems (Hsieh et al., 2001; Hsieh et al. 2007). In Chen and He 

(2005), the authors apply OCBA to a design problem in US air traffic management due to the high complexity of this system. 

For multi-objective problems, Lee et al. (2005) employ MOCBA to optimally select the non-dominated set of inventory 

policies for the differentiated service inventory problem and an aircraft spare parts inventory problem. In these papers, 

although certain changes to OCBA are made according to different problems, the main idea is still retained. It builds the real 

industry problem as a design(s) selection problem and would like to allocate the limited computing budget to each design such 

that the probability of correct selection can be maximized. A greedy approach or an asymptotically optimal allocation rule to 

solve this model is then provided by OCBA. The numerical result in these papers all show that OCBA can save much 

computing cost compared with the traditional ordinal optimization methods and so on. 

 

4.2 Indirect application of OCBA to simulation optimization problems by integrating with search algorithms 

When we directly use OCBA to get the optimal solution for a simulation optimization problem, every solution should be 

given beforehand. In addition, OCBA allocates every solution certain replications at the initial stage to get a general idea about 

these solutions. If the solution space is of enormous size, continuous, or even unbounded, the total computing replications 

needed will be prohibitively high. Thus, direct application of OCBA is only suitable for simulation optimization problems 

whose solution spaces are discrete, bounded and within certain size.  

To tackle the simulation optimization problems with continuous or enormous sized solution spaces, many search 

algorithms have been proposed to search good solutions in the solution space by efficient ways instead of sampling all 

solutions to get the optimal one. At the same time, in the search process, search algorithms need to repeatedly evaluate and 

compare candidate solutions to decide the next search direction. Because the objective functions in simulation optimization 

problems are in the stochastic form, certain computational effort should also be spent on getting the estimates of the objective 

function at these candidate solutions, besides the need to search the space for new candidate solutions. In this evaluation and 

comparison step, we already know the solutions required to be compared and the total number of candidate solutions at each 

iteration is relatively small, so OCBA can be applied to enhance the simulation efficiency of this step. Therefore, the 

integration of OCBA and search algorithms is better than OCBA or search algorithm individually in dealing with difficult 

simulation optimization problems. 

Some frameworks about how to integrate OCBA with search algorithms have been developed. Lee et al. (2006b) propose a 

framework for the integration of MOCBA with search algorithms which is also applicable for general OCBA procedures. Most 

papers about the integration of OCBA with search algorithms actually follow the basic idea of this framework. OCBA is 

applied to determine the right replications allocated to each candidate solution, which are generated by search algorithms at 

each iteration, to accurately estimate the fitness of these solutions and compare them.  

We can classify the related papers based on the different search algorithms integrated with OCBA. For the integration with 

Nested Partition (NP), Shi et al. (1999) show its application in discrete resource allocation. Shi and Chen (2000) then give a 

more detailed hybrid NP algorithm and prove its global optimal convergence. Brantley and Chen (2005) use OCBA with mesh 

moving algorithm for searching the most promising region. Chew et al. (2009) integrate MOCBA with NP to handle 

multi-objective inventory policies problems. For the integration with evolutionary algorithms, Lee et al. (2008) discuss the 

integration of MOCBA with Multi-objective Evolutionary Algorithm (MOEA). In Lee et al. (2009), Genetic Algorithm (GA) 

is integrated with MOCBA to deal with the computing budget allocations for Data Envelopment Analysis. The integration of 

OCBA with Coordinate Pattern Search for simulation optimization problems with continuous solution space is considered in 

Romero et al. (2006). Chen et al. (2008) show numerical examples about the performance of the algorithm combining 

OCBA-m with Cross-Entropy (CE). The theoretical part about the integration of OCBA with CE is then further analyzed in 

He et al. (2010).  

In the papers mentioned above, the hybrid algorithms developed by integrating OCBA with search algorithms show a great 

improvement by numerical experiments, but they mostly just consider the computing cost optimization in estimating the 

performance values of candidate solutions and forget the computing cost optimization in sampling and searching the sample 

space. To avoid this limitation, Lin and Lee (2006) develop a more general framework that can dynamically determine the 

computing resources allocated to the process of estimating the performance values of candidate solutions (named as “depth 

process” in the paper) and the process of searching the solution space (named as “breath process” in the paper). The insights 

here are that in simulation optimization, the estimates will be less accurate if we spend most of the efforts in selecting as many 

designs in the search space as possible due to the uncertainties in the performance measure. However, if we spend most of the 

efforts in getting accurate estimate of the performance measure, the number of designs selected is small and the best one may 

not be near the global optimal. Therefore, the decision maker needs to balance the efforts for these two processes. Lee et al. 

(2006a) goes a step further by also considering the selection of an appropriate degree of information used in the sampling 

method to sample a design. In all these papers, the numerical result demonstrates the significant improvements gained by 

integrating OCBA with search algorithms. 
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5. OPEN CHALLENGES 

Although OCBA approaches have great potential in dealing with simulation optimization problems, there still exist some 

challenges in this field. Andradóttir et al. (2005) and Kim and Nelson (2007) give excellent discussion about the challenges of 

simulation optimization approaches and ranking and selection procedures respectively. In this section, we will only focus on 

challenges of OCBA procedures. 

All OCBA procedures are still the conservative, not optimal, allocation rules because they are developed based on the lower 

bounds of the probability of correct selection. These lower bounds are derived to simplify the probability of correct selection. 

Improving these lower bounds is still an open research problem. Moreover, it is also a deserved research problem using large 

deviation theory formulates the computing budget allocation problem to avoid the hardness in building the expression of 

probability of correct selection, so that we can find the optimal allocation rules. For references in comparing alternatives using 

large deviation theory, see Blanchet et al. (2008); Glynn and Juneja (2004); Szechtman and Yücesan (2008). 

It is also observed that OCBA procedures evaluate the goodness of a design by its mean. Sometimes, using mean as a 

performance metric is far from enough. Quantile, another metric of designs’ performance, owns the flexibility to adjust the 

performance metric among the downside risk, the central tendency, and upside risk (Batur and Choobineh, 2010). It can 

provide the decision maker a most appropriate criterion of the problem under consideration. Hence, developing the allocation 

rule when the selection is based on quantile instead of mean is also an open challenge problem for OCBA procedures. 

Another limitation of some OCBA works is that the allocation is based on an asymptotically optimal solution to the 

approximate problem. Although OCBA performs well in the numerical experiments conducted, there is no theoretical proof 

to show how good the finite-time performance of OCBA is with respect to the real problem. In addition, OCBA does not 

reduce the computing budget required for a single simulation replication. If each simulation replication takes a very long time 

due to the complexity, it is often not possible to run the simulation more than one single replication for each design. Therefore, 

OCBA is not applicable in this case.   

For the application of OCBA, integrating OCBA with search algorithms can effectively enhance the simulation efficiency, 

but it cannot improve the search part about the algorithm. He et al. (2010) point out that it is still an open challenge to develop 

more approaches in integrating OCBA with search algorithms which can optimally allocate computing budget according to the 

objective of the search algorithm leading to improvement in the search and overall efficiency. 

The previous sections show OCBA’s application to simulation optimization problems. In fact, OCBA is more than an 

efficient simulation optimization approach. From a generalized view, OCBA is applicable to the broader domains than 

simulation optimization.  The generalized OCBA model is shown in Figure 2 which is directly taken from Chapter 8 in Chen 

and Lee (2010). In the generalized model, the total budget T is the amount of resources in all, which should be allocated to 

different processors. Each processor gets the budget Ni and generates the output Xi. All these outputs are then input into a 

synthesizer to obtain a final outcome. In this framework, the generalized OCBA model plays the role that optimally determines 

how to allocate all resources to each processor such that the synthesizer can obtain the optimal result.  

 

 

 

 

 

 

 

 

 

 

Figure 2. A generic view of the OCBA framework. 

 

All different OCBA approaches follow the generalized framework, an optimization model determining the best way to 

allocate the budget to maximize a specific objective related to the outcome. Beyond optimization, Shortle and Chen (2008) 

extend the idea to problem of estimating a rare-event probability using simulation. The generalized OCBA model can also be 

extended to problem without simulations or optimizations. Lee et al. (2009) shows an example on how OCBA can help 

determine the budget allocation for data collection which maximizes the accuracy of an efficiency prediction in data 

envelopment analysis (DEA).  Certainly the OCBA notion can be applied or extended to many other problems with or without 

simulations or optimizations. 

 

6. CONCLUSION 

Optimal Computing Budget Allocation (OCBA) is a concept of intelligently allocating simulation budget for maximizing the 
desired selection quality in finding the best or the top m alternatives. The concept is especially useful given a limited 

computing budget which is common as simulation is computationally intensive. OCBA procedures utilize both mean and 
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variance in determining the number of replications for each alternative and they are implemented sequentially. The numerical 

experiments in various papers show the efficient performance of OCBA compared to other procedures. They also indicate 

that OCBA performs well in finite time although the allocation rule in the procedures is developed in asymptotic condition, 

numerical experiments in the literatures show that it performs well in finite time.  

The contribution of this paper is to present various extensions of the original OCBA to handle many different simulation 

optimization problems which can be used as a guide in future research. In addition, it also highlights that there are plenty future 

works that can be done in customizing OCBA to facilitate its integration with search algorithms leading to an improved 

efficiency in handling simulation optimization problems with large number of alternatives.  
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