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Abstract Due to the IT advances in the Enterprise Resource Planning Systems (ERPS), more and more companies 
adapted the Service-Oriented Architecture (SOA) as the main infrastructure of their core business operations. So, 
process is the key identity of business activity to be monitored. However, how to evaluate the performance of as well 
as to staff such process, especially in a volatile environment, so that the business goal can be fulfilled is still unknown 
to most of the mangers. This paper proposes an analytic method to do optimal staffing for the companies facing 
people floating while keeping the capability to predict the performance of such process. So, the staffing decision can be 
verified. A numerical example is illustrated for the proposed method. 
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1. INTRODUCTION 
 

Service-Oriented Architecture (SOA) was known to achieve agility, efficiency and flexibility of core processes in 
companies (Lawler, et al, 2009). More and more firms adapted the SOA as the main infrastructure of their core business 
operations. So, process is the key identity of business activity to be monitored. The usual Human Resource 
Management (HRM) practices may not be well-fitted for such a process-based staffing, because they are based on a 
static environment (Armstrong, 2006). Anderson (2001) proposed an elegant staffing method based on random walk, 
but his approach only applied for the solution of a long-term business cycle. For a daily operation, this may not be 
appropriate. Hence, how to evaluate the performance of as well as to staff such process, especially in a volatile 
environment, so that the business goal can be fulfilled is still unknown to most of the mangers. Here, the term 
“performance” means the probability to fulfill the desired throughput of the underlined process. Chen and Lin (2008b) 
first proposed an analytic method to evaluate the Bayesian performance of a business process. Later, they further 
introduced a method to give the linguistic performance for a business process (Chen and Lin, 2009). Chen (2009) 
extended it to cover the performance of a business process in case of system failures. Chen and Lin‟s model gave the 
excellent solution to evaluate the short-term performance for a daily process even in a volatile environment. 

In this paper, we extend the Chen and Lin's approach (Chen and Lin, 2008a) to generate the optimal staff plan in 
a SOA company with absentees such that the required total cost for staffing is minimum and the performance of the 
process kept acceptable. So, the approach not only searches for the optimal staff plan but also calculates the derived 
performance simultaneously. A process network (or ERP net) is defined as that the nodes of the net are the persons 
responsible for the operations of the processes. The arcs are the precedence relationships (or the systems) between 
processes. So, the node has multi-states or -capacity and may fail (i.e., person absence). The faults in such a network 
usually depict a decrease in capacity (i.e., people‟s throughput) of the node and that stops the network due to an 
insufficient supply of document flow (i.e., the low performance). A conventional way to work out such issues is to 
increase the number of persons for each node. That is, for demand d (i.e., the expected throughput), a trivial plan is to 
let the maximal capacity of each node equal d. Such a scheme is not optimal and considered less benefit in cost. This 
paper is based on the structural analysis for the network and further assessed by the critical analysis. The structural 
analysis is used to identify the structurally important nodes which can not fail during the system operation. The critical 
analysis identifies the critical nodes of the underlined network. A node is critical if and only if its failure causes the 
system performance dropped to zero. Thus, a network full of critical nodes is very fragile. Any node's failure may stop 
the functionality of the process immediately. So, a network is robust if and only if any failure in non-critical nodes 
would not stop the network. In this paper, the calculation of system performance is based on the Minimal Path (MP) 
technique (Chen and Lin, 2008b). An MP is a sequence of nodes and arcs from source to sink without cycles. This 
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paper addresses the optimal conditions for such a network and illustrates the efficiency of the proposed algorithm by 
a numerical example. The remainder of the work is described as follows: The mathematical preliminaries and 
assumptions for the approach are presented in Section 2. Section 3 describes the algorithm of searching for an optimal 
plan. Then, the proposed method is illustrated by a numerical example in Section 4. Section 5 concludes this paper. 
 
2. PRELIMINARIES 
 

Let G= (A, B, M, C, W) be a process network where A is the set of arcs, B= {bi|1 i  n} is the set of nodes, and 

M= (m1, m2, …, mn) is a vector with mi (an integer) being the maximal capacity of node bi. M is normally allocated by 

experience and strongly affects the cost. It is treated as a constant vector here; however, it will be treated as a variable 

vector later to be solved in this paper. C= (c1, c2, …, cn) is the cost vector for nodes. W is the penalty when process failed. 

Such a G is assumed to satisfy the following assumptions.  

 

(1) The capacity of each node bi is an integer-valued random variable which takes values from the set {0, 1, 2, …, 

mi} according to a given distribution. Note that 0 often denotes a failure or being unavailable. 

(2) The arcs are perfect. 

(3) The persons in each operation of the process have the same work capability and characteristics. 

(4) Flow in G must satisfy the flow-conservation law (Ford and Fulkerson, 1962). 

(5) The nodes are statistically independent from each other. 
 
2.1 The Process Network Model 
 

Suppose mp1, mp2, …, mpz are totally the MPs from the source to the sink. Thus, the network model can be 

described in terms of two vectors: the capacity vector X=(x1, x2, …, xn) and the flow vector F= (f1, f2, …, fz) where xi 

denotes the current capacity on bi and fj denotes the current flow on mpj. Then such a vector F is feasible if and only if  
 

1

{ | }
z

j i j i

j

f b mp m


     for each i = 1, 2, …, n.      (1) 

 

Equation (1) describes that the total flow through bi can not exceed the maximal capacity on bi. We denote such 

set of F as UM≡{F|F is feasible under M}. Similarly, F is feasible under X=(x1, x2, …, xn) if and only if 

 

1

{ | }
z

j i j i

j

f b mp x


     for each i = 1, 2, …, n.  (2) 

 
For clarity, let UX ={F|F is feasible under X}. The maximal flow under X is defined as 

V(X)≡max{
1

|
z

j Xj
f F U


 }. 

 
2.2 System Performance Evaluation 
 

Given a demand d, the system performance Rd is the probability that the maximal flow is no less than d, i.e., 

Rd≡Pr{X|V(X)  d}. To calculate Rd, it is advantageously to find the minimal vector in the set {X|V(X)  d}. A 

minimal vector X is said to be a lower boundary point (LBP) for d if and only if (i) V(X)  d and (ii) V(Y)<d for any 

other vector Y such that Y<X, in which Y  X if and only if yj  xj for each j=1, 2, …, n and Y<X if and only if Y X 
and yj<xj for at least one j. Suppose there are totally t LBPs for d: X1, X2, …, Xt, the system performance is equal to 
 

Pr{
1
{ | }

t

ii
X X X


 }. (3) 

 
2.3 Probability Calculation Scheme 
 

To calculate Rd, the probability for Pr{Xi} of node bi should be defined in advance. This can be done by assuming 
that there are ci persons for node bi to produce the corresponding capacity. Each person has the availability of ri. Then 
the probability for the current capacity Xi is denoted as a binomial distribution:  
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Pr{ Xi =k}= (1 ) i
i c kk

i i

c
r r

k




 
 
 

. 

 
2.4 Generation of all LBPs for d 
 

At first, we find the flow vector F  UM such that the total flow of F equals d. It is defined as in the following 
demand constraint. 
 

1

z

j

j

f d



  (4)  

 

Then, let F={F | F  UM and satisfies Equation (4)}. We show that a lower boundary point X for d  existed then 

there exists an F  F by the following lemma (Chen, 2009) without proof. 
 

Lemma 1. Let X be a lower boundary point for d, then there exists an F  F such that 
 

1

{ | }
z

i j i j

j

x f b mp


     for each i = 1, 2, …, n.  (5) 

 

Given any F  F, we generate a capacity vector XF = (x1, x2, …, xn) via Equation (5). Then the set  = {XF |F 

 F} is built. Let min = {X|X is a minimal vector in }. Lemma 1 implies that the set  includes all lower boundary 

points for d. The following lemma (Chen, 2009) further proves that min is the set of lower boundary points for d. 
 

Lemma 2. min is the set of lower boundary points for d.  
 

3. STAFF PLANNING 
 

Our problem is to find a proper M such that the network is survived and the required total cost is minimal and 

the performance can be derived. Given a network, the MPs are determined by the topology of the network. One can 

analyze the flow of a node via the binding MPs. Let Pi= {mpj|bi  mpj } denote the subset of MPs binding with bi. We 

define the coverage of bi by the following definition. 

 

Definition 1. (Coverage): Let bi, bj  B. bj is covered by bi if and only if Pj  Pi. 

 

Definition 1 implies that there is no flow through bj if bi totally failed. A structural impact (SI) Si for bi is then 

defined as:  

 

Definition 2. (SI): Si= |{bj|Pj  Pi}|/n. 

 

The symbol |‧| denotes the total number of elements in the set. „n‟ is the total number of nodes in the network. 

If Si=1.0, it means that bi covers all nodes in the network and has the strongest structural impact upon the network. 

The smaller Si is, the less impact bi has. Si can not be zero, since it must cover itself. 

 
3.1 Critical Analysis 

 

If the capacity of a node is decreased to zero (i.e., totally failed) while keeping the other nodes unchanged, we can 

analyze the derived impact of the network via performance. The calculated performance is thought as a ``survivability'' 

for d of the network when the specific node totally failed. It is defined as: 

 

Definition 3. (Survivability): Rd,i is the derived performance when bi totally failed. 

 

This concept can be extended to the identification of critical nodes. 

 

Definition 4. (Critical node): bi is critical if and only if Rd,i=0. 
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From Definition 3 and 4, we have the following lemma. 

 

Lemma 3. bi is critical if Si = 1.0. 

 

This implies that bi may be non-critical if Si < 1.0.  

 
3.2 Robustness 

 

Given M, a network G is robust if it satisfied the following definition: 

 

Definition 4. (Robustness): M is robust for d if and only if Rd,i>0 for all i such that Si <1.0. 

 

That is, if the vector M is robust for d, it should provide sufficient capacity to support such failure except those 

are structurally important. It can be shown that mi d  i is a sufficient condition for M to be robust. 

 

Lemma 4. M is robust for d if mi  d  i. 

 

However, when M is robust, it is not necessary for all mi to be greater than d. The combination of flows may fulfill 

the demand d. Lemma 4 only describes the fact that d is a feasible upper bound for mi. Our goal is then restated as to 

find a feasible lower bound of mi to support robustness for d such that the total cost is minimal and the performance is 

predictable. A novel way is to inspect the capacity vector in LBPs generated by initially setting all mi =d. By Equations 

4 and 5, an LBP is a minimal capacity vector such that the total flow in G equals d. Lemma 4 shows that the set of LBPs 

when initially setting all mi =d can not be empty. Although an LBP is generated after given M, the column value in the 

vector is less than or equal to the corresponding mi. If we reduce mi of each node to the corresponding column value of 

LBP, G still survived for d. However, no capacity of any column can be further decreased, since an LBP is a minimal 

vector to support G being survived for d. Similarly, if G is robust when bi failed, a feasible vector for the remaining 

nodes can be derived from the LBPs generated by G\{bi}. The newly derived capacity can cover the lost flow of bi. Let 

Φ = {i| Si < 1.0 } be the index set of the structurally unimportant nodes, and min,i denote the set of LBPs generated 

after setting mi =0 and mj =d for any j i. The LBPs generated from min,i can be used as a guide to select the minimal 

M. However, an LBP may consist of numerous zeros in the vector, which are undesirable for applications (i.e., they are 

corresponding to the faulty nodes). Consequently, a vector with least zeros is preferable for choice. To filter out the 

LBPs with undesirable zeros, an efficient strategy based on SI value can be applied. We firstly show that if the flow of 

the self-covering node bi (i.e., Si=1/n) is greater than 0, then the flow of other nodes covering bi would not be zero. 

That is, the flow of such bi will dominate the non-zero flow to other nodes. 

 

Lemma 5. For bi with Si=1/n, if 
1
{ | }

z

k i kk
f b mp


 >0, then 

1
{ | }

z

k j kk
f b mp


 >0  bj covering bi, j i}. (6) 

 

Let φ= {i|Si=1/n} be the index set of the self-covering nodes. Further relations can be derived as in the 

following lemma. 

 

Lemma 6. If φ=∩{iφ}Pi for acyclic networks, then φ is empty. 

 

The above lemma describes that all the self-covering nodes have no common intersection of MPs in acyclic 

networks. The following lemma further shows that the total number of MPs‟ binding with the self-covering nodes 

should be greater than or equal to the number of self-covering nodes. 

 

Lemma 7. If φ={iφ}Pi, then |φ| |φ|. 

 

Finally, the number of MPs can be shown to have the following relations. 

 

Lemma 8. Suppose mp1, mp2, …, mpz are totally the MPs from source to sink, then z |φ| |φ|. 

 

When the network is acyclic, each self-covering node should only belong to one MP exclusively. 

 

Lemma 9. If G is acyclic and i φ, then |Pi|=1. 
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Then, we can inspect those columns corresponding to the self-covering nodes in each LBP generated from min,i. 

There are two conditions for inspection. One is |φ|\leq d, and the other is |φ| > d. The former denotes the supply of 

flow d is sufficient for all self-covering nodes and so are the other nodes. If any self-covering node is not zero, then 

every other node should cover at least one self-covering node and its flow would not be zero. In this case, one can 

directly delete those LBPs generated from min,i with zero columns other than column i and its coverage columns 

(which should be zero). The latter condition states the insufficient flow situation. In this case, one even dispatch flow 

d to each self-covering node by only 1 unit of flow, there are still some other self-covering nodes with zero flow. 

However, such vector consists of the least number of zeros among all other LBPs. That is, one can delete those LBPs 

with columns corresponding to the self-covering nodes having the value greater than 1. Such filtering process can keep 

the vectors with the least number of zeros in hand and decrease the search space tremendously for M. It can be shown 

that the filtered min,i has the possible range of lower bound for M. Let X=(x1, x2, …, xn) be an LBP in min,i, then 

 

Theorem 1. M= (m1, m2, …,mn) is robust for d if and only if  
 

mj =max{xj|X min,i  i Φ} for j=1, 2, …,n. (7) 

 

Theorem 1 shows that such M exists. We denote such set as {M|M is robust for d}. The performance under M 

is defined as Rd(M). The optimal solution for M would be the one such that 

 

Minimize 
1
{ (1 ( ))}

n

j j dj
m c Wd R M


   subject to M  . 

 

Let Mi,j={xj|xj> 0  X  min,i } denote the set of possible values for column j. We further define 

Mmin,j=max{xj|xj Mi,j and xj is minimal  iΦ} as the largest minimal value among i for column j and 

Mmax,j=max{xj|xj Mi,j and xj is maximal  iΦ} as the largest maximal value among i for column j. One can show 

that for any M, mj exists in the interval [Mmin,j, Mmax,j]. 

 

Theorem 2. If M= (m1, m2, ..., mn)  , then  
 

Mmin,j mj  Mmax,j for j=1, 2, ..., n.  (8) 

 

For clarity, we define mj={ mj | Mmin,j mj  Mmax,j} as the interval set for column j. One can show that   m1 

m2 ...  mn, where the symbol „‟ denotes the Cartesian product among sets and is defined as m1 m2={(x,y)|x m1 

and y m2}.  

 

Theorem 3.   m1 m2 ...  mn. 

 

Theorem 3 denotes that the set m1 m2 ...  mn  includes all the feasible M in . This implies that  can be 

searched from the Cartesian product.  

 
4. ALGORITHM 
 

Let i = {XF|F F under mi=0}. The following algorithm is proposed to find the optimal M for d. 
 

Algorithm 1: The optimal staff plan of G for d. 

Step 1. For i  Φ do  // for structurally unimportant nodes. 

    a. Initially set mi=0, mk=d for any k i. Generates min,i as in the following: 

     1) Compute F for satisfying 
1
{ | }

z

k l k lk
f b mp m


   and 

1

z

kk
f d


 . 

     2) Construct i via XF, which is formed by xl=
1
{ | }

z

k l kk
f b mp


 . 

     3) Generate min,i via simple comparison. //i.e., pairwise comparison. 

    b. For X  min,i do  // The filtering process. 

        If |φ| d, then 

         For 1  l  n do 

          If xl =0 and l i and bl bi's coverage set, then min,i =min,i \{X}. 
         End for. 
        Else, 
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         For 1  l  n do 

          If  xl>1 and Sl=1/n, then min,i =min,i \ {X}. 
         End for. 
        End for. 
   End for. 

Step 2. For  iΦ do  // Construct Mi,j 

     For X min,i do 

       For 1  j  n do 

        If xj  Mi,j and xj>0, then Mi,j=Mi,j{xj}. 
       End for. 
     End for. 
   End for. 

Step 3. For  1  j  n do  // Construct mj. 

        Mmin,j=max{xj|xj Mi,j and xj is minimal  iΦ}. 

        Mmax,j=max{xj|xj Mi,j and xj is maximal  iΦ}. 

        mj={ mj | Mmin,j mj  Mmax,j}. 
   End for. 

Step 4. For M m1 m2 ...  mn do    // Construct . 
     Set CNT=0  //  CNT is a counter forΦ. 

     For iΦ do 

      For X min,i do 

       If M  X, then CNT=CNT+1 and break. 
      End for. 
     End for. 

     If CNT=|Φ|, then ={M}. 
   End for. 
Step 5. Let sumC =ndW.   // ndW is a feasible large number. 

Step 6. For M do // Search for the optimal M. 

If  


n

j djj MRWdcm
1

))}(1({ < sumC, then Mbest=M and sumC =  


n

j djj MRWdcm
1

))}(1({ . 

   End for. 
Step 7. Output: The optimal plan is Mbest, the lowest cost is sumC and the performance is Rd(Mbest). 

 

For iΦ, Step (1) generates min,i for d. Step (1b) filters out the vectors with undesired zeros. Step (4) constructs 

the candidate set . Step (6) finds the best choice of M, where Rd is calculated via Pr{
1
{ | }

t

k
k

X X X


 } and Xk is the 

LBP in min under M. Since the computation of Rd is not emphasized in this paper, the following complexity will 
exclude the complexity derived from the computation of Rd. 

 

The number of solutions for F is bounded by 
1

1

z d

z

 



 
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 

. The number of XF generated is then bounded by 

1

1

z d

z

 



 
 
 

. The storage space needed for all the final min,i (i.e., the filtered set) is then bounded by O(n
1

1

z d

z

 



 
 
 

) in 

the worst case. Let ni=|min,i |, then the number of Mi,j is bounded by O(
ii

dnn
 ). The number of  is then 

bounded by O(
| |

1

| |
| m |

n

k
kd

 



 
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 

 ) in the worst case. In sum, the total storage space needed is O(
| |

1

| |
| m |

n

k
kd

 



 
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 

 ) in 

the worst case. A pairwise comparison is required for generating min,i between 
1

1

z d

z

 



 
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 solutions. This takes 

O(n2
1

1

z d

z

 



 
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 

) time to generate all the final min,i. To generate , it spends O(n
11

| m |
n n

i k
ki

n


 ) time in the worst 

case. Then, it consumes O(||) time to test the best M. In short, the total computational time required is 

O(n
11

| m |
n n

i k
ki

n


 ) in the worst case. 
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5. NUMERICAL EXAMPLE 
 

Suppose an order entry operation existed to accept orders. Two alternative factories can be employed to support 
these orders. Four production lines operate in the two factories. Two delivery departments existed to deliver all of 
these manufactured products. Finally, the payment department closes all these orders. Figure 1 denotes such process 
network. There are totally 7 MPs existed: mp1={b1, b2, b4, b8, b10}, mp2={b1, b2, b5, b8, b10}, mp3={b1, b2, b6, b8, b10}, 
mp4={b1, b2, b6, b9, b10}, mp5={b1, b3, b6, b8, b10}, mp6={b1, b3, b6, b9, b10}, and mp7={b1, b3, b7, b9, b10}. Assuming the 
historical availability, the cost, the coverage set, and SI for each node are in Table 1. Each person contributes 10 
capacity in average. The penalty is 120 (in $103/unit). The demand for the example is 40.  
 

 

b1 

b2 

b4 

b5 

b6 

b3 

b7 

b9 

b8 

b10 

Order 

Entry 

Payment 

Factory 1 

Prod. Line 1 

Delivery 1 

Factory 2 

Prod. Line 2 

Prod. Line 3 

Prod. Line 4 

Delivery 2 

 

Figure 1 An order fulfillment process 

 
Table 1 The data for Figure 1 

Nodes 
Cost 

($103/Month) 
Availability Pi Coverage sets SI 

b1 0.6 0.99 
P1={mp1, mp2, mp3, mp4, mp5, mp6, 

mp7} 
{b1, b2, b3, b4, b5, b6, 

b7, b8, b9, b10} 
S1=1.0 

b2 0.8 0.98 P2={mp1, mp2, mp3, mp4} {b2, b4, b5} S2=0.3 
b3 0.7 0.97 P3={mp5, mp6, mp7} {b3, b7} S3=0.2 
b4 1.2 0.98 P4={mp1} {b4 } S4=0.1 
b5 1.1 0.98 P5={mp2} {b5 } S5=0.1 
b6 1.3 0.99 P6={mp3, mp4, mp5, mp6} {b6 } S6=0.1 
b7 1.1 0.97 P7={mp7} {b7 } S7=0.1 
b8 0.8 0.98 P8={mp1, mp2, mp3, mp5} {b4, b5, b8} S8=0.3 
b9 0.7 0.97 P9={mp4, mp6, mp7} {b7, b9} S9=0.2 

b10 0.8 0.99 
P10={mp1, mp2, mp3, mp4, mp5, 

mp6, mp7} 
{b1, b2, b3, b4, b5, b6, 

b7, b8, b9, b10} 
S10=1.0 

 
According to the above algorithm, the optimal staff plan for this example is M= (4, 4, 4, 1, 1, 2, 2, 4, 4, 4) and the 

minimal cost is 618.44 (in 103). The performance is predicted as R4=0.922616, a pretty good level. A critical analysis is 
conducted to test the above result comparing with a random plan in Table 2. 
In this table, there are eight nodes critical in the random plan. This means that the major operations can not fail; 
otherwise the order fulfillment process will be stopped. Because of the high penalty during the service down time, the 
random plan incurred higher total cost. It is apparent that the proposed plan is superior to the random plan. 
 
6. CONCLUSION 
 

This paper proposes an algorithm to find the optimal staff plan in a SOA company such that the process is robust 
and the required staffing cost is minimal while the performance is predictable. Since the globalized economics changes 
very fast, the people float for each firm's operation is also versatile. Our approach can provide companies a helpful 
toolkit to manage such situation while keeping the ability to predict the performance of process. At first, we do the 
structural analysis as a basis for the staff plan strategy. The structural analysis is to determine the nodes which can not 
fail despite how many resources engaged. Then, such plan is evaluated by the critical analysis which identifies the 
critical nodes of the underlined process. A critical node is a node where only its failure causes the system performance 
dropped to zero. This paper also demonstrates a numerical example to show the efficiency of the proposed approach. 
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Table 2. A critical analysis for the proposed plan vs. an empirical plan. 

Nodes 
Proposed 
Plan (M) 

R4,i Critical? 
Random Plan 

(M) 
R4,i Critical? 

b1 4 0.0000 Y 6 0.0000 Y 
b2 4 0.7532 N 1 0.0000 Y 
b3 4 0.8510 N 3 0.0000 Y 
b4 1 0.9226 N 1 0.7977 N 
b5 1 0.9226 N 2 0.7820 N 
b6 2 0.9227 N 1 0.0000 Y 
b7 2 0.9227 N 3 0.0000 Y 
b8 4 0.7532 N 2 0.0000 Y 
b9 4 0.8510 N 2 0.0000 Y 
b10 4 0.0000 Y 6 0.0000 Y 

Performance R4(M) 0.922616   0.797996 
Cost (in $103) 618.4   1192.6 
Robustness Yes   No 
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