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AbstractIn this paper, we consider a system that is operated periodically and whose state is either good or bad. 
When the system stays in the good state, it moves to the bad state with a probability. However, the system in the bad 
state cannot return to the good state. At each time epoch, we may select one of  the following five actions: operation 
with a monitor, operation without a monitor, inspection, repair, and replacement. After operation, the true state is 
inferred and we can determine the probability that the system is in the bad state. Thus, the accuracy of  the inferred 
result depends on whether the system is monitored or not. We express the model as a partially observable Markov 
process and derive the total expected discounted cost for an unbounded horizon.  For this model, several structural 
properties of  an optimal maintenance policy are investigated. 
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1. INTRODUCTION 
 

Any system is generally operated under various environments and constraints. Hence, most systems cannot 
remain in good operational condition because of  deterioration with elapse of  time and thus eventually fail without 
maintenance. In addition, since many systems have recently become larger and more complex, their failure can cause 
very serious problems, such as loss of  life and economic disaster. To avoid these problems, preventive maintenance 
plays an important role. If  we can determine the deterioration level of  the system in some way or its failure is crucial, 
condition-based maintenance (CBM) would be adopted. Thus, it is important to decide when and how to perform 
maintenance action, such as inspection, repair, or replacement. Previously, many mathematical models were 
proposed and analyzed to solve maintenance problems. 

If  it is appropriate to assume that the deterioration level of  a system corresponds to a finite non-negative 
integer, we may express the deterioration of  the system as the Markov process. This model is called the Markovian 
deteriorating system. Derman (1963) has considered a discrete-time and discrete-state Markovian deteriorating 
system and derived conditions sufficient for obtaining an optimal control limit policy. The model assumes that 
replacement is the only maintenance action. Douer and Yechiali (1994) have introduced the idea of  uncertain repair, 
which indicates that the result of  repair is uncertain and shown that a generalized control limit policy holds under 
reasonable conditions. Tamura (2007) has analyzed a Markovian deteriorating system with uncertain repair and 
investigated the necessity of  inspection after completion of  repair. These studies consider that one can determine 
the true state of  the system completely at any given time. However, when it is costly to identify the true state of  a 
system through inspection, we should not inspect the system from the viewpoint of  efficiency. Instead, some 
information on the deterioration of  the system may be obtained. For example, consider a production process that 
produces items and observe the quality characteristic of  the produced item. The degree of  deterioration of  the 
production process reflects the quality characteristic of  the produced item. That is, the observed value is a function 
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of  the true state. Then, we infer the deterioration level, which cannot coincide with the true state. In other words, 
we select an optimal action based on incomplete information. For the analysis of  the problem, partially observable 
Markov decision process (POMDP) models are suitable. The paper published by Monahan (1982) is an excellent 
review of  this area. Ross (1971) and White (1979) have studied the POMDP models and derived conditions 
sufficient for obtaining the optimal maintenance policies with monotone structures. Ohnish et al. (1986) have 
extended these models by introducing the concept of  monitoring and obtained more generalized results on the 
optimal maintenance policy. Ivy and Pollock (2005), and Maehara and Suzuki (2005) have analyzed a POMDP model 
in which the idea of  imperfection and/or multiplicity of  repair is introduced. Grosfeld-Nir (2007) has focused on a 
two-state POMDP in which the observed value is continuous. Also, Grosfeld-Nir (1996) has derived simple 
equations used to find the control limit under the assumptions that the observed value follows a uniform 
distribution. Thus, these previous studies have assumed only one procedure for the acquisition of  incomplete 
information on the deterioration of  the system. In some cases, however, this assumption is not appropriate. For 
example, to infer the deterioration level of  a rotary machine, we would observe the velocity or acceleration of  
oscillation. Therefore, it is important to consider a model in which several procedures for acquiring incomplete 
information are available and the accuracy of  inference varies with the procedure. 

In this paper, we consider a POMDP model to express the behavior of  a system that is operated periodically 
and whose state can be either good or bad. After each time epoch, one of  the following actions may be taken: wait 
without a monitor, wait with a monitor, inspection, repair, and replacement. 

When wait with or without a monitor is conducted, the true state is inferred and incomplete information is 
obtained. Through inspection, however, we can determine the true state of  the system. For this model, we show that 
an optimal maintenance policy has monotone properties under several conditions. 
 
2. MODEL DESCRIPTION 
 

Consider a system that is periodically operated and whose state is either good or bad at any time. Hereafter, we 
assume that good and bad states correspond to states 0 and state 1, respectively. At each time epoch, we may select 
one of  the following actions: wait without a monitor, wait with a monitor, inspection, repair, and replacement. If  
wait without a monitor is selected, we work the system for one period and do not monitor it after working. Then, 
the system in state 0 moves to state 1 with the probability p at the next time and the system in state 1 continues to 
stay there. The working cost ui is incurred for the system in state i. If  wait with a monitor is selected, differently 
from wait without a monitor, we monitor the system after working and obtain an outcome on its deterioration level 
with the monitoring cost cm. The outcome of  the monitor is represented by a random variable, which follows the 
probability density function given by fi(y), when the system is in state i. The probability that the system is in the bad 
state is obtained by Bayes' theorem. If  inspection is selected, we inspect the system and determine its true state after 
working with the inspection cost cd. If  repair is selected, the system in state i returns to the good state with the 
probability qi at the next time and, the repair cost ri is incurred. This indicates that the result of  repair is uncertain 
and that the system in state 0 moves to the bad state with a certain probability. After the completion of  replacement, 
however, the system returns to state 0 without fail. Thus, the replacement cost ci is incurred for the system in state i.  

The costs and probabilities satisfy the following assumptions. 
 

Assumption 1   
1 0 1 0 1 0, ,u u r r c c    

Assumption 2   
010101010101 ,, ccrrccuurruu   

Assumption 3   
md cc   

Assumption 4   
10 qq   

Assumption 5   P Q SI  , where 

0 0

1 1

11
,

10 1

q qp p
P Q

q q


 



  
   
   

  
and SI indicates Stochastic Increasing. 

 
Assumption 1 indicates that it is more costly to work the system, repair, or replace it with deterioration. 

Assumption 2 indicates that, as the system deteriorates, the merit of  repair or replacement becomes larger than that 
of  working, and the merit of  replacement becomes larger than that of  repair. Assumption 3 indicates that the cost 
for inspection is larger than that for monitoring because, unlike monitoring, inspection reveals the true state of  the 
system. Assumption 4 expresses that it is more unlikely for the system to return to the good state with deterioration. 
Assumption 5 indicates that, with deterioration, the system worked for one period is more likely to move to a worse 
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state compared with that immediately after completion of  repair. Therefore, these assumptions are valid from the 
realistic viewpoint. Assumptions 4 and 5 are called the stochastic order relations (see Kijima (1997)). 
 
3. FORMULATION 

 
Let f(x,y) be the probability density function of  the outcome of  the monitor given that the state probability is x. 

The state probability indicates the probability that the true state of  the system is the bad state. Thus, 
 

       0 1
, 1f x y x f y x f y                                                                 (1) 

 
holds. Moreover, we denote the next state probability when the current state probability is x by h(x,y). Thus, 
 

 
     

 
1 0

1
,

,

x f y p x f y
h x y

f x y

 
                                                            (2) 

 
is obtained. 

Let p ( 0 1p  ) be the discount factor. We let V(x) denote the total expected discounted cost for an 

unbounded horizon when the probability that the system stays in the bad state is x. In addition, W(x), WM(x), I(x), 
RR(x), and RT(x) indicate that wait with a monitor, wait without a monitor, inspection, repair, and replacement are 
taken when the state probability is x, respectively. Thus, we obtain 
 

     1 0 0 1 ,W x u u x u V p x p        
                                                     (3) 

       1 0 0 , , ,M mW x c u u x u V h x y f x y dy



                                                 (4) 

             1 0 0 1 1 0 1 1 ,dI x c u u x u x p V x x p V           
 

                                (5) 

             1 0 0 1 0 0 0 1 00 1 1 ,RR x r r x r q q x q V q q q x V           
 

                             (6) 

     1 0 0 0 .TR x c c x c V                                                                  (7) 

 
Hence, V(x) is expressed as 
 

            min , , , , .
M R T

V x W x W x I x R x R x                                               (8) 

 
To determine the optimal maintenance policy, we should solve the recursive equation Eq.(8). If  the optimal 

maintenance policy has a specific structure, it enables us to reduce the computational time for determining it. 
 
4. STRUCTURAL PROPERTIES OF OPTIMAL MAINTENANCE POLICY 
 
In this section, we give some results on the optimal maintenance policy that minimizes the total expected discounted 
cost for an unbounded horizon. As a preliminary, the properties of  the functions are presented. 
 

Lemma 1   V(x) is concave and increasing in x. 

Lemma 2   W(x)-I(x), WM(x)-I(x), W(x)-RR(x), and WM(x)-RR(x), are concave in x. 

Lemma 3   W(x)-RT(x), WM(x)-RT(x), I(x)-RT(x), RR(x)-RT(x), and I(x)-RR(x) are concave and increasing in x. 

Lemma 4   There exists a real number  such that if  mc , then W(x)-WM(x) changes its sign twice at 

most. Also, if  sign changes occur, then the first change is from minus to plus and the second one is 

from plus to minus. 
 

By using lemmas 2, 3, and 4, we can derive a monotone property of  the optimal maintenance policy. However, 
we cannot determine the real number  from the parameters given in advance, such as the costs and probabilities. 
This indicates that lemma 4 is not valuable for obtaining the optimal maintenance policy. 

Consequently, we assume that fi(y) is the uniform distribution as follows. 
 

Assumption 6   The outcome Y follows the uniform distribution such that 
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 
1 ,

0 ,

i
i

i

y K K
f y

y K K

 
 

 
                                                                   (9) 

where the intervals K1, K and K0 are disjoint and are next to each other. In addition, 
 

   
0 1

0 1 1 .
y K y K

f y dy f y dy 
 

     
 

Thus, the following result is obtained. 
 

Lemma 5   W(x)-WM(x) is concave in x. 
 

In contrast to lemma 4, lemma 5 is valuable for deriving the optimal maintenance policy. Hereafter, we analyze 
the model under assumptions 1, 2, 4, and 5. 

Let D(x) be the optimal action at the state probability x. For simplicity, if  D(x)=A for x < xk and D(x)=B for, 

then ,kxx  we write BA
kx

 , where the suffix indicates that the k-th optimal action is selected below the k-th 

control limit. 
Then, by using the above two lemmas, we can derive several structural properties of  the optimal policy. 

 
Theorem 1   The optimal maintenance policy must be classified into one of  the following six structures: 

1. 3 5 6 71 2 4x x x xx x x

M R TW W W I W R W R

     

        

2. 3 5 6 71 2 4x x x xx x x

M M R TW W I W W R W R

     

        

3. 3 5 6 71 2 4x x x xx x x

M M R M TW W I W R W W R

     

        

4. 3 5 6 71 2 4x x x xx x x

M R TW I W W W R W R

     

        

5. 3 5 6 71 2 4x x x xx x x

M R M TW I W W R W W R

     

        

6. 3 5 6 71 2 4x x x xx x x

R M TW I W R W W W R

     

        

where 
1 2 3 4 5 6 70 1.x x x x x x x               

 
Theorem 1 reveals that the optimal maintenance policy may be characterized by eight regions at most. 

Furthermore, some constraints of  the parameter can reduce the numbers of  regions and structures of  the optimal 
maintenance policy. 

Firstly, we focus on the constraint on the repair probabilities. 
 

Lemma 6   If  q0=q1, W(x)-RR(x), WM(x)-RR(x), I(x)-RT(x), RR(x)-RT(x), I(x)-RR(x), W(x)-RR(x) and WM(x)-RR(x) 
are concave and are increasing in x, W(x)-I(x), WM(x)-I(x) and W(x)-WM(x) are concave in x. 

 
According to lemma 6, the following property is derived. 
 

Theorem 2   If  q0=q1, then the optimal maintenance policy must be classified into one of  the following three 
structures: 

1. 3 5 61 2 4x x xx x x

M R TW W W I W R R

    

       

2. 3 5 61 2 4x x xx x x

M M R TW W I W W R R

    

       

3. 3 5 61 2 4x x xx x x

M R TW I W W W R R

    

       

where 
1 2 3 4 5 60 1.x x x x x x             

 
Theorem 2 as well as theorem 1, indicates that the optimal maintenance policy is characterized by seven 

regions at most. If  the monitoring cost cm=0, then there exists the unique optimal maintenance policy and the 
number of  regions is less than that of  theorem 2 as follows. 
 

Theorem 3   If  cm=0, then there exists the optimal maintenance policy of  the following structure, 
 



Tamura, Hayashi, Yuge and Yanagi: Monotone Properties of Optimal Maintenance Policy for Two-State Partially Observable Markov  
       Decision Process Model with Multiple Observations 

IJOR Vol. 7, No. 3, 23−34 (2010) 

 

27 

 

1

1 2

2 3

3 4

4 5

5

0 ,

,

,

,

,

1,

M

M

R

M

T

W for x x

I for x x x

W for x x x
D x

R for x x x

W for x x x

R for x x



 

 

 

 



 

 

 


 

 

 













 
 

where 
1 2 3 4 5

0 1.x x x x x
    

     
 

 
Theorem 3 coincides with the basic structure of  the optimal maintenance policy in the previous studies. In 

other words, the above property includes the optimal maintenance policy for the previous two-state models. 
Furthermore, from theorems 2 and 3, we can derive the following result. 

 
Corollary 1   If  cm=0 and q0=q1, then there exists the optimal maintenance policy of  the following structure, 
 

 

1

1 2

2 3

3 4

4

0 ,

,

,

,

1,

M

M

R

T

W for x x

I for x x x

D x W for x x x

R for x x x

R for x x



 

 

 



 

 

  

 

 











 
 

where 
1 2 3 4

0 1.x x x x
   

    
 

 
Corollary 1 reveals that the minimum number of  regions of  the optimal maintenance policy is five. 

 
5. NUMERICAL EXAMPLES 
 

In the former section, we have shown the structural properties of  the optimal maintenance policy that can be 
used to solve the recursive equation Eq.(8). This section provides several numerical results that can be used to 
investigate further the quantitative characteristics of  the optimal maintenance policy. 

Firstly, we set the following parameters for numerical analysis. 
 

0 1 0 1 0 1

0 1

10.0 , 20.0 , 21.0 , 30.8 , 35.4 , 0.473, 1.256 ,

0.80 , 0.30 , 0.55, 0.90 , 0.66.
m d

u u r r c c c c

p q q 

       

    

  
These parameters satisfy assumptions 1, 2, 4 and 5. Now, the purpose is to investigate the widths of  the 

respective regions where the identical action is selected as an optimal action. Table 1 shows the optimal maintenance 
policy under the above parameters. 
 

Table 1. Numerical results 
 

D(x) 1,i ix x 





 

W 
WM 

I 
WM 

W 
RR 

W 
RT 

[0.000, 0.651) 
[0.651, 0.666) 
[0.666, 0.670) 
[0.670, 0.873) 
[0.873, 0.890) 
[0.890, 0.936) 
[0.936, 0.939] 
[0.939, 1.000] 
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Table 1 indicates that theorem 1 holds. Intuitively, we might infer that the widths of  the regions where the 
identical action is optimal decrease as the state probability increases. For example, when the three regions of  
D(x)=W are compared, region [0.000,0.651) is larger than region [0.873,0.890) and region [0.936,0.939) is the 
smallest among them. In the case of  D(x)=WM, however, this property does not hold. Therefore, we find that the 
verification of  our inference requires additional assumptions. 

Secondly, we obtain some numerical results that can be used to investigate how the constraint on the 
parameters affects the widths of  the respective regions. Consequently, the repair probabilities q0 and q1 are assumed 
be identical. Table 2 provides the numerical results for three cases below. 
 
 

Table 2. Optimal Maintenance Policies under different repair probabilities 
 

q0=q1=0.78 q0=q1=0.69 q0=q1=0.66 

D(x) 1,i ix x 





 D(x) 1,i ix x 





 D(x) 1,i ix x 





 

W 
I 

WM 

W 
RR 

[0.000, 0.444) 
[0.444, 0.742) 
[0.742, 0.758) 
[0.758, 0.829) 
[0.829, 1.000] 

W 
WM 

W 

RR 

RT 

[0.000, 0.667) 
[0.667, 0.830) 
[0.830, 0.905) 
[0.905, 0.963) 
[0.963, 1.000] 

W 
I 

WM 

W 
RT 

[0.000, 0.650) 
[0.650, 0.760) 
[0.760, 0.887) 
[0.887, 0.940) 
[0.940, 1.000] 

 
 

The numerical results reveal that the numbers of  regions are identical and the orders of  the optimal actions are 
different. Since the system is operated upon the selection of  the action W, WM, or I, we conjecture that the increase 
in repair probability raises the control limit for maintenance for the action RR or RT. However, Table 2 shows that 
D(x)=RR over x=0.829 for qi=0.78, D(x)=RR or RT over x=0.905 for qi=0.69, and D(x)=RT over x=0.940 for 
qi=0.66, where i=0 and 1. Therefore, we find that the control limit for the action RR or RT does not necessarily 
depend on the repair probability only. 
 
6. CONCLUSIONS 
 

We construct a two-state POMDP model with two types of  observation, by which incomplete information can 
be obtained. This model is difficult to analyze because the value function consists of  two concave functions. For this 
model, in this paper, we investigate the structural properties of  the optimal maintenance policy. 

By introducing the assumption that the outcome of  monitoring follows a uniform distribution, we have shown 
that the optimal maintenance policy may be characterized by eight regions at most and it must be classified into one 
of  the specific six structures. This seems to be complex because the optimal maintenance policy in the previous 
studies can be unique. However, the result would be very remarkable since the model assumes the two procedures 
for obtaining incomplete information differently from the past ones. 

Furthermore, we have shown that some constraints of  the parameters, such as the costs and the probabilities, 
reduce the numbers of  regions and structures of  the optimal maintenance policy. Thus, we ascertain that the 
elimination of  one concave function can derive the uniqueness of  the optimal maintenance policy whose structure 
is commonly observed in the previous studies. 

 Our future work is to transform the model into a system consisting of  multistate more than three states 
under the same assumptions used in this study. Also, it is important to relax the assumption on the uniform 
distribution and make assumptions that reduce the numbers of  structures of  the optimal maintenance policy 
further. 
 
 
REFERENCES 
 

1. Derman, C. (1963). On Optimal Replacement Rules When Changes of  States Are Markovian. In: Mathematical 
Optimization Techniques (Ed.: R. Bellman), University of  California Press, Chapter 9, pp.201-210. 

2. Douer, N. and Yechiali, U. (1994). Optimal Repair and Replacement in Markovian Systems. Communications in 
Statistics-Stochastic Models, 10:253-270. 

3. Grosfeld-Nir, A. (1996). A Two-State Partially Observable Markov Decision Process with Uniformly Distributed 
observations. Operations Research, 44:458-463. 

4. Grosfeld-Nir, A. (2007). Control Limits for Two-State Partially Observable Markov Decision Processes. European 



Tamura, Hayashi, Yuge and Yanagi: Monotone Properties of Optimal Maintenance Policy for Two-State Partially Observable Markov  
       Decision Process Model with Multiple Observations 

IJOR Vol. 7, No. 3, 23−34 (2010) 

 

29 

Journal of  Operational Research, 182:300-304. 
5. Ivy, J.S. and Pollock, S.M. (2005).  Marginally Monotonic Maintenance Policies for a Multi-State Deteriorating 

Machine with Probabilistic Monitoring, and Silent Failures. IEEE Transactions on Reliability, 54:489-497. 
6. Kijima, M. (1997). Markov Processes for Stochastic Modeling, Chapman & Hall, London, United Kingdom. 
7. Maehara, H. and Suzuki, K. (2005). An Optimal Policy for Condition Monitoring Maintenance with Uncertain 

Repair. The Journal of  Reliability Engineering Association of  Japan, 27:219-230 (in Japanese). 
8. Monahan, G.E. (1982). A Survey of  Partially Observable Markovian Decision Processes, Theory, Models and 

Algorithms. Management Science, 28:1-16. 
9. Ohnishi, M., Kawai, H. and Mine, H. (1986). An Optimal Inspection and Replacement Policy under Incomplete 

State Information. European Journal of  Operational Research, 27:117-128. 
10. Ross, S.M. (1971). Quality Control under Markovian Deterioration. Management Science, 17:587-596. 
11. Tamura, N. (2007). On a Markovian Deteriorating System with Uncertain Repair and Replacement. IEICE 

Transactions on Fundamentals of  Electronics, Communications and Computer Sciences, E90-A:467-473. 
12. White, C. (1979). A Markov Quality Control Process Subject to Partial Observation. Management Science, 23:843-852. 

 
APPENDIX 

 
A. Proof  of  Lemmas 
 
A.1 Proof  of  Lemma 1 
 
We write the n-period discounted cost as Vn(x). From assumption 1, V1(x) is concave and increasing in x since 
Eqs.(3)-(7) are linear and increasing in x. If  we assume that Vn-1(x) is concave and increasing in x, for 

   1 0 1 ,x x x


        

     

 
 

   

 

     

 

 

 

     

 
 

   
     

 
 

     

 

1 1 0

1 1 0 1 0

1 11 0 1 0

1
,

,

1 , 1 , 1
,

, , , ,

1 1
1 , ,

, ,

n

n

n n

x f y p x f y
V f x y

f x y

f x y x f y p x f y f x y x f y p x f y
V f x y

f x y f x y f x y f x y

x f y p x f y x f y p x f y
f x y V f x y V

f x y f x y

 







 

 

 





 

 

      
 



     
  



 
 
 
 
 
 

   
   
   

 
 

holds, and    n n
V x V x  for x x  because h(x,y) is increasing in x. Since Vn(x) converges on V(x) uniformly, 

the lemma holds. 
 
A.2 Proof  of  Lemma 2 
 
From Eqs.(3)-(7), W(x)-I(x), WM(x)-I(x), W(x)-RR(x) and WM(x)-RT(x) can be expressed by linear and concave 
functions since theorem 1 holds. Therefore, the above four functions are concave in x. 
 
A.3 Proof  of  Lemma 3 
 
From Eqs.(3)-(7), W(x)-RT(x), WM(x)-RT(x), I(x)-RT(x) and RR(x)-RT(x) can be expressed by linear and concave 
functions as lemma 2. Then, according to assumptions 2 and 4, and theorem 1, these functions are increasing in x. 
Hence, the lemma holds. 
 
A.4 Proof  of  Lemma 4 
 
From Eqs.(3) and (4), 
 

         1 , , .M mW x W x V p x p V h x y f x y dy c




 
            

 
                                      (10) 

 
According to Jensen's inequality, 
 

       1 , ,V p x p V h x y f x y dy




   
 

since theorem 1 holds, and these functions W(x) and WM(x) intersect at two points x=0 and x=1 from Eqs.(1) and 
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(2). Hence, Eq.(10) has a maximal value at the point x  where 0 1.x   If  the maximal value is greater than cm, 

the lemma holds. 
 
A.5 Proof  of  Lemma 5 
 
If  assumption 6 holds, 
 

   
0

1

,

, 1 ,

1 ,

p y K

h x y p x x y K

y K



   







 

 
and 
 

               0 1
1 1 1 1 1 .

M m
W x u x u x c x V p xV V p x x             

 
 
Then 
 

                  1 1 1 1 ,
M m

W x W x V p x x c V p x V p V              

 
and this function is concave in x. Therefore, lemma 5 holds. 
 
A.6 Proof  of  Lemma 5 
 
Since q0=q1, 
 

         1 0 0 0 0
0 1 1 .

R
R x r r x r q V q V       

 
Hence, we find that W(x)-RR(x) and WM(x)-RR(x) are linear in x. This completes the proof. 
 
B. Proof  of  Theorems 
 
B.1 Proof  of  Theorem 1 
 

Lemma 3 reveals that there exist real numbers  5,,1~ ixi
 such that 

 

       1 1
0 1,

T T
W x R x for x x and W x R x for x x                              (11) 

       2 2
0 1,

M T M T
W x R x for x x and W x R x for x x                           (12) 

       3 3
0 1,

T T
I x R x for x x and I x R x for x x                                (13) 

       4 4
0 1,

R T R T
R x R x for x x and R x R x for x x                             (14) 

       5 5
0 1.

R R
I x R x for x x and I x R x for x x                                (15) 

 

Also, lemma 2 reveals that there exist real numbers such that  6, ,15ix i 
 

 

           6 6 7 7
, 0 , , , , 1,W x I x x x W x I x x x x W x I x x x          

           8 8 9 9
, 0 , , , , 1,

R R R
W x R x x x W x R x x x x W x R x x x          

           10 10 11 11
, 0 , , , , 1,

M M M
W x I x x x W x I x x x x W x I x x x          

           12 12 13 13
, 0 , , , , 1,

M R M R M R
W x R x x x W x R x x x x W x R x x x        

           14 14 15 15
, 0 , , , , 1,

M M M
W x W x x x W x W x x x x W x W x x x        

 
where 

6 7 8 9 10 11 12 13 14 15
, , , .x x x x x x x x and x x      

Now, suppose  1 2 3 4
max , , , .x x x x x  Eqs.(11)-(14) show that D(x)=RT for 1x x  since 

5 4
x x always 

holds from Eqs.(13)-(15). 
Consequently, we temporarily ignore RT(x) and focus on W(x), I(x), and RR(x). The number of  orders of  the 

intersections 
5 6 7 8

, , , ,x x x x and 
9

x can be four since the other orders are inconsistent with lemmas 2 and 3. We 

give the possible four orders and the minimum functions in the respective regions as follows. 
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Order 1  
6 7 5 8 9

0 1.x x x x x       

         6
min , , , 0 ,

R
W x I x R x W x x x             6 7

min , , , ,
R

W x I x R x I x x x x    

         7 8
min , , , ,

R
W x I x R x W x x x x             8 9

min , , , ,
R R

W x I x R x R x x x x    

         9
min , , , 1.

R
W x I x R x W x x x    

Order 2  
6 8 5 7 9

0 1.x x x x x       

         6
min , , , 0 ,

R
W x I x R x W x x x             6 5

min , , , ,
R

W x I x R x I x x x x    

         5 9
min , , , ,

R R
W x I x R x R x x x x             9

min , , , 1.
R

W x I x R x W x x x    

Order 3  
6 8 9 7 5

0 1.x x x x x       

         6
min , , , 0 ,

R
W x I x R x W x x x             6 7

min , , , ,
R

W x I x R x I x x x x    

         7
min , , , 1.

R
W x I x R x W x x x    

Order 4  
5 8 6 7 9

0 1.x x x x x       

         8
min , , , 0 ,

R
W x I x R x W x x x             8 9

min , , , ,
R R

W x I x R x R x x x x    

         9
min , , , 1.

R
W x I x R x W x x x    

 
The above result reveals that order 1 includes orders 2, 3 and 4. If  we replace W(x) with WM(x), then the same 
orders of  minimum functions as the above four hold. 

Hence, we can summarize the order of  minimum functions with an increase in state probability below. 
 

        

 

 

 

 

 

 

•

1

• •

1 2

• •

2 3

• •

3 4

•

4

, 0 ,

, ,

, ,
min , , ,

, ,

, ,

, 1,

R T

R

T

W x x x

I x x x x

W x x x x
W x I x R x R x

R x x x x

W x x x x

R x x x

 

 

 


 

 

 













                                  (16) 

 

where • • • •

1 2 3 4
0 1.x x x x x       

We can ignore the intersections in Eq.(16) because the purpose is to establish the structure of  the optimal 
maintenance policy for the proposed model. 

Next, we investigate the order of  minimum functions including the function WM(x) in detail. W(x) and WM(x) 

intersect at two points 
14

x and 
15

x . These are located in two regions of     • • • • • • •

1 1 2 2 3 3 4
0, , , , , , ,x x x x x x x   
     and 

•

4
,x x  at most from Eq.(16) since D(x)=RT for  , 1x x  from Eqs.(11) and (12). The total number of  orders is 

15, because if  the two points are located in two different regions, then there are 5C2 combinations, and if  the two 
points are located in one region, then there are 5C1 combinations. 

Now, we enumerate the total orders without contradiction based on lemmas 2 and 3 below. The orders of  
minimum functions are described and the intersections are omitted for the respective cases because of  the former 
reason. 

 In the case of  •

14 1
0 , ,x x   

 if  •

15 1
0 , ,x x   then the order of  minimum functions is 

               .M R T
W x W x W x I x W x R x W x R x        

 if  • •

15 1 2
, ,x x x   then the order of  minimum functions is 

             .M R T
W x W x I x W x R x W x R x       

 if  • •

15 2 3
, ,x x x   then the order of  minimum functions is 

               .M M R T
W x W x I x W x W x R x W x R x        

 if  • •

15 3 4
, ,x x x   then the order of  minimum functions is 

             .M M R T
W x W x I x W x R x W x R x       
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 if  15 4
, ,x x x


   then the order of  minimum functions is 

               .M M R M T
W x W x I x W x R x W x W x R x        

 In the case of  14 1 2
, ,x x x

 
   

 if  15 1 2
, ,x x x

 
   then the order of  minimum functions is 

           .R T
W x I x W x R x W x R x      

 if  15 2 3
, ,x x x

 
   then the order of  minimum functions is 

             .M R T
W x I x W x W x R x W x R x       

 if  15 3 4
, ,x x x

 
   then the order of  minimum functions is 

           .M R T
W x I x W x R x W x R x      

 if  15 4
, ,x x x


   then the order of  minimum functions is 

             .M R M T
W x I x W x R x W x W x R x       

 In the case of  14 2 3
, ,x x x

 
   

 if  15 2 3
, ,x x x

 
   then the order of  minimum functions is 

               .M R T
W x I x W x W x W x R x W x R x        

 if  15 3 4
, ,x x x

 
   then the order of  minimum functions is 

             .M R M T
W x I x W x W x R x W W x R x        

 if  15 4
, ,x x x


   then the order of  minimum functions is 

               .M R M T
W x I x W x W x R x W x W x R x        

 In the case of  14 3 4
, ,x x x

 
   

 if  15 3 4
, ,x x x

 
   then the order of  minimum functions is 

           .R T
W x I x W x R x W x R x      

 if  15 4
, ,x x x


   then the order of  minimum functions is 

             .R M T
W x I x W x R x W x W x R x       

 In the case of  14 4
, ,x x x


   

 if  15 4
, ,x x x


   then the order of  minimum functions is 

               .R M T
W x I x W x R x W x W x W x R x        

Therefore, the orders of  minimum functions are summarized as follows. 

1. For 14 1
0 , ,x x


   and 15 1

0 , ,x x


   

               .M R T
W x W x W x I x W x R x W x R x        

2. For 14 1
0 , ,x x


   and 15 2 3

, ,x x x
 

   

               .M M R T
W x W x I x W x W x R x W x R x        

3. For 14 1
0 , ,x x


   and 

15 4
, ,x x x



   

               .M M R M T
W x W x I x W x R x W x W x R x        

4. For 14 2 3
, ,x x x

 
   and 15 2 3

, ,x x x
 

   

               .M R T
W x I x W x W x W x R x W x R x        

5. For 14 2 3
, ,x x x

 
   and 15 3

, ,x x x


   

               .M R M T
W x I x W x W x R x W x W x R x        

6. For 14 4
, ,x x x


   and 15 4

, ,x x x


   

               .R M T
W x I x W x R x W x W x W x R x        

Then, the number of  regions of  the optimal maintenance policy is eight at most. This completes the proof. 
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B.1 Proof  of  Theorem 2 
 
We show theorem 3 by using an argument similar to the proof  of  theorem 1. The difference between the two 
proofs is the use of  lemma 6. 

Lemmas 3 and 6 indicate that there exist real numbers  ˆ 1, , 7
i

x i   such that 

       1 1
ˆ ˆfor 0 , for 1,

T T
W x R x x x W x R x x x                                    (17) 

       2 2
ˆ ˆfor 0 , for 1,

M T M T
W x R x x x W x R x x x                                  (18) 

       3 3
ˆ ˆfor 0 , for 1,

T T
I x R x x x I x R x x x                                      (19) 

       4 4
ˆ ˆfor 0 , for 1,

R T R T
R x R x x x R x R x x x                                   (20) 

       5 5
ˆ ˆfor 0 , for 1,

R R
I x R x x x I x R x x x                                      (21) 

       6 6
ˆ ˆfor 0 , for 1,

R R
W x R x x x W x R x x x                                    (22) 

       7 7
ˆ ˆfor 0 , for 1,

M R M R
W x R x x x W x R x x x                                  (23) 

Also, lemma 2 indicates that there exist real numbers 
8 9
ˆ ˆ, ,x x and 

10
x̂ such that 

 

           8 8 9 9
ˆ ˆ ˆ ˆ, 0 , , , , 1,W x I x x x W x I x x x x W x I x x x                        (24) 

           10 10 11 11
ˆ ˆ ˆ ˆ, 0 , , , , 1,

M M M
W x I x x x W x I x x x x W x I x x x                (25) 

           12 12 13 13
ˆ ˆ ˆ ˆ, 0 , , , , 1,

M M M
W x W x x x W x W x x x x W x W x x x             (26) 

 

where 
8 9 10 11
ˆ ˆ ˆ ˆ, ,x x x x   and 

12 13
ˆ ˆ .x x  

Now, suppose  5 6 7
ˆ ˆ ˆmax , , .x x x x  Eqs.(21), (22) and (23) show that D(x)=RR for .x x x   As explained 

previously in the proof  of  theorem 1, D(x)=RT for 1x x  holds where .x x  

Hence, when we focus on the functions W(x), I(x), RR(x) and RT(x), the order of  minimum functions is given 
as 
 

        

 

 

 

 

 

1

1 2

2

, 0 ,

, ,

min , , , , ,

, ,

, 1.

R T

R

T

W x x x

I x x x x

W x I x R x R x W x x x x

R x x x x

R x x x

 

 

  

 

 











                                  (27) 

 
If  we replace W(x) with WM(x), then the same order of  minimum functions as Eq.(27) holds. 

Consecutively, we investigate the order of  minimum functions including the function WM(x). Eqs.(26) and (27) 

show that the intersects 
12

x̂  and 
13

x̂  are located in two regions of      1 1 2 2
0 , , , , , , ,x x x x x x x  
    and  , 1x  

at most. However, the two intersections cannot be located in regions  ,x x  and/or  , 1x  from lemma 6. Thus, 

we pay attention to the other three regions and enumerate the total orders that are consistent with lemma 6. The 
total number of  orders is six because there are 3C2 combinations when the two intersections are located in two 
different regions and there are 3C1 combinations when the two intersections are located in one region. Accordingly, 
we obtain the orders of  minimum functions with an increase in state probability as follows. 

 In the case of  12 1
ˆ 0 , ,x x   

 if  13 1
ˆ 0 , ,x x   then the order of  minimum functions is 

             .M R T
W x W x W x I x W x R x R x       

 if  13 1 2
ˆ , ,x x x   then the order of  minimum functions is 

             .M M R T
W x W x I x W x W x R x R x       

 if  13 2
ˆ , ,x x x   then the order of  minimum functions is 

             .M M R T
W x W x I x W x W x R x R x       

 In the case of  12 1 2
ˆ , ,x x x   
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 if  13 1 2
ˆ , ,x x x   then the order of  minimum functions is 

         .R T
W x I x W x R x R x     

 if  13 2
ˆ , ,x x x   then the order of  minimum functions is 

           .M R T
W x I x W x W x R x R x      

 In the case of  12 2
ˆ , ,x x x   

 if  13 2
ˆ , ,x x x   then the order of  minimum functions is 

             .M R T
W x I x W x W x W x R x R x       

Therefore, the number of  orders of  minimum functions is three as follows. 

1. For 12 1
ˆ 0 , ,x x   and 13 1

ˆ 0 , ,x x   

             .M R T
W x W x W x I x W x R x R x       

2. For 12 1
ˆ 0 , ,x x   and 13 1

ˆ , ,x x x   

             .M M R T
W x W x I x W x W x R x R x       

3. For 12 2
ˆ , ,x x x   and 13 2

ˆ , ,x x x   

             .M R T
W x I x W x W x W x R x R x       

Then, the number of  regions of  the optimal maintenance policy is seven at most. This completes the proof. 
 

B.3 Proof  of  Theorem 3 
 
If  cm=0, according to Jensen's inequality, 
 

       , , 1V h x y f x y dy V p x p




    

 

and    M
W x W x  for 0 1.x  This indicates that the action W is not always selected. Hence, theorem 3 holds. 


