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Abstract In this paper we develop queuing model results for a single “automated” workstation that receives jobs 

from another automated workstation. An automated workstation is a server with deterministic processing times that 

experiences random operating times between failures, and then subsequent random repair times.  We develop 

analytical expressions for the queue size distribution, the average number in system and the variance of  the number 

in system using a discrete model of  this queuing system. 
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1. INTRODUCTION 

In the analysis of  production systems, the presence of  “automated” workstations is very common. An automated 

workstation is a server with deterministic processing times that experiences random operating times between failures, 

and then subsequent random repair times. In this paper we develop analytical expressions for the queue size 

distribution, the average number in system, and the variance of  the number in system for a single automated 

workstation that receives input from another automated workstation.  

The actual workstation that is considered is assumed to have fixed job processing times and exponentially 

distributed operating times between failures, and exponentially distributed repair times.  These have been shown to 

be reasonable assumptions in practice (Inman 1999, Dallery and Gershwin 1992).  Much is known about such 

automated workstations operating in isolation. In Kim and Alden (1997) a mixed discrete/continuous probability 

mass/density function for the time to produce a fixed number of  jobs on such a workstation is derived (which also 

includes the special case of  a single job). For a discrete model of  such a workstation a formula for the variance of  

the number of  jobs produced in a fixed time period is derived in Gershwin (1992). In Kim and Alden (1997) and 

Hopp and Spearman (2001) formulas can be found for the mean and variance of  the time a job spends in such a 

workstation that includes process and repair time.  

One additional step in the analysis of  automated workstations is the analysis of  a workstation and its input buffer. 

In this research we develop an analytical model for a single automated workstation that receives its input from an 

upstream automated workstation and compare this against commonly known G/G/1 approximations with respect 

to estimating the average number of  jobs in the system. Analytical expressions for the distribution of  the number of  

jobs in the system (the workstation and its input buffer) are also derived.  In a related paper (Nagarajan and Kim 

2006), “linking equations” have been developed so that the results developed here can be applied to the analytical 

analysis of  a series of  automated workstations using a two-workstation decomposition approximation. This paper 

presents the details of  the modeling approach and derivation of  the results for an automated workstation queuing 

system utilized in Nagarajan and Kim (2006). Simplified formulas as well as the result for the variance of  the 

number in system are new. 

A large amount research addressing the modeling of  serial automated production systems focuses on modeling 
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two automated workstations in series with finite buffer capacities between workstations. The goal of  this prior 

research has focused on estimating the throughput of  such systems, and includes continuous and discrete 

approximations of  automated workstations. These models have served as the foundation for models developed to 

analyze a longer series of  automated workstations (with finite buffers) using numerical two-workstation 

decomposition approximations.  A review of  such models can be found in Dallery and Gershwin (1992).  

There has been less research directed at developing explicit analytical models of  an automated workstation with 

an infinite input buffer, with a focus on predicting the work-in-process or time-in-system. In Altiok (1997) M/G/1 

queuing results were applied to a system consisting of  a single (possibly automated) workstation with Poisson 

arrivals. The distribution of  the number in system for a workstation with Poisson arrivals, exponentially distributed 

time between failures (both operating time and elapsed time), and phase-type repair time distributions is examined in 

Altiok (1997) using continuous time Markov chain analysis. Another analysis approach for a single automated 

workstation with an infinite capacity input buffer is to apply existing general queuing approximation methods. Such 

methods are employed in Hopp and Spearman (2001). In Hopp and Spearman (2001) two-moment G/G/1 queuing 

model approximations are applied. G/G/1 approximations have also been used as part of  software packages that 

estimate the performance of  networks of  workstations with infinite buffer capacities (Whitt, 1983).  There are 

multiple two-moment G/G/1 approximation models in use, as well as “linking equations” that estimate the 

parameters of  the input process to a workstation as a function of  the prior workstations parameters. Various 

G/G/1 approximations and linking equations are summarized in Shanthikumar and Buzacott (1980) and Buzzacott 

and Shanthikumar (1993).  Because these models do not explicitly model the operation of  an automated 

workstation it is expected that they may not always perform accurately, in particular when the coefficient of  

variation (CV) of  the interarrival and/or service process is high (Buzzacott and Shanthikumar, 1993).  

The remainder of  this paper is organized as follows. In section 2 we present a Markov chain model for an 

automated workstation with infinite input buffer capacity receiving its jobs from another automated workstation 

(assumed to always have work). In section 3, the expressions for queue size distribution, the average number in 

system, and the variance of  the number in system are derived. In section 4, the accuracy of  the model is examined 

by comparisons to simulations and existing G/G/1 approximations. 

 

2. MARKOV CHAIN MODEL OF TWO AUTOMATED WORKSTATIONS IN SERIES 

 

We develop a Markov chain model of  an automated workstation with infinite input buffer space, receiving jobs 

from another automated workstation with an infinite supply of  unprocessed jobs. By assuming that the first 

workstation always has jobs to process, the output process from the first workstation represents output from an 

automated workstation with no influence of  a random arrival process. Modeling the output process in the presence 

of  variable input is addressed in Nagarajan and Kim (2006), where a series of  automated workstations is analyzed. 

The Markov chain model is a discrete time model where the fixed workstation processing time t, serves as the 

discrete time unit (it is assumed that both workstations produce at the same speed when up). By the discrete nature 

of  the model, the operating times between failures, and repair times will follow geometric distributions as 

approximations to exponential distributions. In most automated workstations, this type of  discrete approximation is 

sufficiently accurate since the fixed processing times are normally much smaller than the time between failures and 

repair times.  

The mechanics of  the discrete time Markov chain are as follows: 

 State transitions occur at the end of  each time step. 

 Any workstation that is down at the beginning of  a time step may be repaired even if  the workstation is 

empty at the beginning of  the time step. 

 A workstation that is up and not empty at the beginning of  a time step will complete its job even if  it 

moves to a down state at the end of  the time step.  

 Any jobs completed at the end of  a time step are moved out of  the workstations and new jobs are moved 

into the workstations even if  a workstation moves to a down state. Note that a job may be moved out of  

both workstations, and a job moved into both workstations at the end of  a time step. 

 Workstations that are up at the beginning of  a time step but idle because they are starved, cannot change 

to a down state at the end of  a time step. 

We assume that the long-run processing capacity of  the first workstation is strictly less than that of  the second 

workstation. This ensures that the number of  jobs in the second workstations input buffer will not steadily increase 

over time. The objective of  the model is to analyze the behavior of  the second workstation and its input buffer, 

which we will refer to as the “system”. 

We let the state of  the Markov chain at time unit n, 1 2=( , , )nX x x N , where ix  = status of  workstation i, i=1,2 
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and  {0,1}ix  . 0ix    if  the workstation is down a the beginning of  a time step, and 1ix   if  the 

workstation is up a the beginning of  a time step. N is the number of  jobs in workstation 2 plus the number in its 

input buffer.  We let kjp p     denote the transition probability matrix for this Markov chain. 

If  workstation i  is up and operating (an unprocessed job is in the workstation) at the beginning of  the time step, 

it remains up during the time step and may transition to a down state with probability if  at the end of  the time 

step. The job being processed in this cycle will be completed and moved out of  the workstation. If  workstation i  

is down and under repair at the beginning of  the time step, it remains down during the time step and is repaired 

with probability ir  at the end of  the time step. If  an unprocessed job was present in this workstation at the 

beginning of  the time step, the job remains unprocessed and stays in the workstation until the workstation is 

repaired before being processed.  

A state transition diagram of  the Markov chain model is shown in Figure 1.          

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. State transition diagram for the Markov chain model. State = 1 2( , , )x x N  where N is a column label and 

1 2( , )x x are row label. Different marked transitions (e.g., dashed) represent transition from states with the same 1 2( , )x x values. 

 

The transition probabilities between any two states in figure 1 are functions of  the workstation status at time n 

and n+1.  For example, (1,1,2),(1,0,2)p  the transition probability from state (1,1, 2)  to (1,0, 2) equals 1 2(1 )f f .  

When there are no customers in the system (i.e., workstation 2 is starved), the transition probabilities reflect the 

assumption that workstation 2 cannot fail if  it is starved. 

Since the actual workstations are assumed to have exponentially distributed operating times between failures, and 

repair times, the probabilities if   and ir  are computed as a function of  the fixed processing time t, iMTBF , and 

iMTTR , iMTBF is the mean operating time between failures for workstation i, and iMTTR is the mean repair time 

for workstation i (both parameters of  exponential distributions). The probabilities if  and ir are computed such 

that the mean time to process a job, and the variance of  the time to complete a job (which includes workstation 

downtime) in the discrete model match that for the actual workstation.  Without loss of  generality let 1t  , and 

let iT   the total time spent by a job in workstation i.  In Kim and Alden (1997) and Hopp and Spearman (2001) 

it is shown that, 
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For the discrete model it is straightforward to show that  

 

. [ ] 1 i
i

i

f
E T

r
   

To derive [ ]iVar T  as a function of  if  and ir , let 1I   if  a job just moves into a workstation that has just 

failed, and I = 0 otherwise. By conditioning on the indicator variable I we get (Nagarajan and Kim 2006), 

 
2 2 2[ ] [ | 1]* ( 1) [ | 0]* ( 0)i i iE T E T I p I E T I p I       

2
2 2 1 2

2
1

(2 )
[ ] ( 1) (1 ) * (1) *(1 )k i i i

i i i i i

ik

r f r
E T k r r f f

r






   
      
 
 
 .  

2

(2 )
[ ] i i i

i

i

f r f
Var T

r

 
  . 

if  and ir  as functions of  iMTBF and iMTTR can then be expressed as: 

 

2

2* *

i
i

i i i i

MTTR
f

MTBF MTTR MTBF MTTR


 
    

 

2

2* *

i
i

i i i i

MTBF
r

MTBF MTTR MTBF MTTR


 
    

 

3. DERIVATIONS OF THE AVERAGE NUMBER IN SYSTEM AND THE DISTRIBUTION OF THE 

NUMBER IN SYSTEM 

 

To derive analytical expressions for the average number in system and the distribution of  the number of  jobs in 

the system, we take advantage of  the transition structure of  the Markov chain, and Markov chain 

aggregation/disaggregation results (Feinberg and Chiu, 1987, Kim and Smith, 1995). Figure 1 was drawn in such a 

way that the number in system defines a natural partitioning of  the system states.  Following the terminology 

defined in Kim and Smith (1995), a set of  four states in the Markov chain that represent the same number in system 

will form a macrostate. A Markov chain is in a particular macrostate whenever it is in any state contained in the 

macrostate. The transitions from macrostate to macrostate also constitute a Markov chain (Kim and Smith, 1995). 

The solution to this macrostate Markov chain represents the solution to the queuing model since the macrostates 

represent the number in system, and the macrostate Markov chain steady state probabilities will equal the sum of  

the steady state probabilities of  all states contained in the macrostate (Kim and Smith, 1995). A diagram of  the 

macrostate Markov chain is shown in figure 2. 

...1 2 30

 

Figure 2. Macrostate Markov chain model. 

 

3.1 Microstate Markov Chain Transition Probabilities 

 

One method to compute the transition probabilities of  the macrostate Markov chain (transition probability 

matrix denoted by P), is to examine the states within each individual macrostate in isolation where all transitions 

after a macrostate is left are ignored. The states within a macrostate are referred to as microstates, and the process 

realized by viewing the microstates in isolation constitutes a Markov chain (Kim and Smith, 1995).  These Markov 
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chains are referred to as microstate Markov chains. If  the steady state probabilities of  the microstate Markov chain are 

known, then they can be used to calculate the macrostate Markov chain transition probabilities (Kim and Smith, 

1995). To find the transition probabilities of  the microstate Markov chains (denoted by Np for the microstate chain 

associated with N customers in system) we take advantage of  the transition structure.  

Consider the microstate chain that corresponds to zero customers/jobs in the system. All transitions leaving the 

set of  states contained in this chain must eventually return to these states (due to ergodicity), and re-enter the set of  

states from only a single state. Thus the transition probabilities for those transitions leaving the microstate Markov 

chain are known. This is shown in Figure 3.  

 

 

 

 

 

 

 

 

 

 

 

   

 

 

 

         

   

Figure 3. Finding the microstate Markov chain transition probabilities. 

 

The transition probability matrix for the microstate Markov chain for zero customers/jobs in the system is, 
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We next address the microstate Markov chain transition probabilities when there are two or more customers in 

the system. In figure 1 it can be seen that all transitions that increase the number in system occur when workstation 

1 is up and workstation 2 is down. Similarly all transitions that decrease the number in system occur when 

workstation 1 is down and workstation 2 is up. Furthermore the Markov chain structure (transitions into, within, 

leaving) for the microstate Markov chains for a number in system of  two or greater is the same.  Therefore 
I Jp p  for I, J 2 .  Using similar reasoning as used to find 0p , when transitions leave the states in a 

microstate chain to the „left‟, they return to the microstate chain via a single state. Also when transitions leave the 

states in a microstate chain to the „right‟, they also return to the microstate chain via a single state. Therefore we get, 
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To find Ip requires knowledge of  the steady state probabilities of  0p since transitions leaving the microstate 

chain (for one in the system) to the „left‟ in figure 1 may return to the microstate chain via two different states (as 

shown in figures 1 and 3).  Let 1,1 1,0 0,1 0,0[ , , , ]N N N N N      represent the steady state probabilities of  the 

microstate Markov chain for N in the system, where 
N
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3.2. Microstate Markov Chain Solutions 

 

It is possible to derive manageable analytical solutions for the microstate Markov chains as functions of  the 

workstation failure and repair probabilities, since they are only four-state Markov chains. The solutions for the 

microstate chains satisfy N N Np  , 0N  , 1,1 1,0 0,1 0,0 1N N N N       , and thus represent the unique steady 

state solution to the microstate Markov chains.  Although we are primarily interested in the steady state 

probabilities for those microstates that have transitions out of  the set of  microstates, all microstate steady state 

probabilities have been derived. These steady state solutions are presented next. 
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Microstate Markov chain steady state probabilities for 2N  . 
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3.3. Macrostate Markov Chain Solution and Queuing Model Results 

 

Let [ ]IJP P be the transition probability matrix for the macrostate Markov chain. The macrostate Markov chain 

depicted in Figure 2 has the following transition probability matrix structure and values for PIJ. In this section N is 

always ≥ 2. 
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The transition probabilities are computed from the results of  the microstate Markov chain analysis. Transition 

probabilities for a macrostate are computed as weighted averages using the microstate chain steady probabilities as 

weights. For example, a transition probability for a transition to the „right‟ is the weighted sum over the states within 

the microstate chain, multiplied by the probability of  a transition to the right. That is, 
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Let 0 1 2[ , , , ]      represent the steady state probabilities of  P . Because of  the simple structure (time 

reversible) of  the macrostate Markov chain, it is straightforward to show that,  
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K can be expressed as a function of   i if and r , 
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Equations 3-7 represent the probability distribution of the number of jobs in the second workstation and its input 

buffer. Expressions for the average and the variance of the number in system can then be obtained from equations 3-7.  

Letting 01 10,   N Nq and s   to simplify the notation, and letting C = the number in system gives,  
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Simplifying we get, 
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The average number in system can be expressed as a function of   i if and r , 
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The variance of the number in system is found by first finding E[C2] and then subtracting E[C]2, 
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Subtracting  
2

E C gives, 
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4. COMPARISON WITH TWO-MOMENT G/G/1 APPROXIMATIONS AND SIMULATIONS 

 

As mentioned in section 1, one approach for analyzing automated workstations receiving input from automated 

workstations is the application of  general two-moment G/G/1 approximations.  Another more time consuming 

approach is to use simulation. In this section we show how the current model performs with respect to predicting 

the average number in system when compared against simulation results and two popular G/G/1 approximations. 

The system used in these comparisons can be thought of  as two automated workstations in series, where the first 

workstation always has jobs to process. Under this system description the mean and variance of  the job 

interdeparture times from the first workstation may be found using equations (1) and (2).  Similarly the mean and 

variance of  the processing times (actual work time plus downtime) at the second workstation can be calculated. With 

these values computed a number of  two-moment G/G/1 approximations may be applied to estimate the number 

of  jobs in the second workstation and its queue.  The two G/G/1 approximations used here are approximations 
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for the average number in queue from Sakasegawa (1977) and Yu (1977), and Kramer and Lagenbach-Belz (1976). 

The approximations in Sakasegawa (1977) and Yu (1977) are the same as that used in Hopp and Spearman (2001).  

Whitt (1983) uses an approximation that is the approximation in Kramer and Lagenbach-Belz (1976) when the 

squared coefficient of  variation of  the interarrival times is less than one, and is the approximation in Sakasegawa 

(1977) and Yu (1977) when the square coefficient of  variation of  the interarrival times is greater than one. By adding 

the workstation utilization to these approximations we get an estimate for the average number in system.  

The current model is compared to simulation results of  a continuous time system with exponentially distributed 

operating times between failures and repair times, to estimate the impact of  the discrete model approximation. The 

simulation results will also serve as the best estimate of  the average number in system. A variety of  systems were 

simulated to represent different interarrival and service time coefficients of  variation, and different workstation-two 

utilizations. Within each service time coefficient of  variation and utilization range, 20 different systems were 

simulated. Each simulation started with a 100,000 time unit warm-up (the fixed processing time for a single job is 

one time unit). After the warm-up period, the simulations were run until 1,000,000 jobs were completed on the 

second workstation. 30 replications were conducted and the best estimate for a systems average number in system 

was taken as the average of  the 30 replications. 

A summary of  the simulation results is presented in Table 1.  In Table 1, the simulation results are separated into 

test sets. Within each set the range for the workstation processing time (work time plus downtime) and interarrival 

time coefficients of  variation, and utilizations for the second workstation are shown. The results presented are the 

average, maximum, and minimum (over the number of  systems within a test set) absolute percent difference from 

simulation.  

The average percent differences in Table 1 are plotted over the test sets in Figure 4. As can be seen, the performance 

of the model is very consistent over a range of workstation coefficients of variation and utilizations. Also, the average 

errors when using G/G/1 approximations can be very large. In general the approximation of Kramer and 

Lagenbach-Belz (1976) outperforms the approximation in Sakasegawa (1977) and Yu (1977) although they are very 

similar in performance. This is not surprising since they are very similar in functional form. Additionally the results 

confirm that the G/G/1 approximations do perform better for higher utilizations.  Both approximations can be 

viewed as modifications of the upper bound in Kingman (1962) for a G/G/1 queue, which becomes tighter as 

utilization approaches one. 

 

Table 1. Summary of  comparisons the model with simulation and two-moment G/G/1 approximations 

Absolute Percent Difference From Simulation

Test Set Workstation Workstation No. of New Model Sakasegawa-Yu KLB

Number CV Range Util. Range Systems Avg. Max Min Avg. Max Min Avg. Max Min

1 0 to 1 80%-90% 20 3.14% 9.81% 0.06% 26.06% 59.04% 2.71% 20.28% 58.97% 0.77%

2 1 to 2 80%-90% 20 1.49% 5.35% 0.03% 18.10% 61.76% 0.60% 16.14% 60.99% 0.65%

3 2 to 3 80%-90% 20 2.12% 6.01% 0.03% 32.01% 91.44% 5.93% 28.31% 83.76% 3.00%

4 3 to 4 80%-90% 20 2.37% 4.88% 0.08% 23.27% 78.73% 4.75% 20.16% 69.99% 3.49%

5 4 to 5 80%-90% 20 1.86% 5.84% 0.06% 20.08% 56.49% 2.21% 16.95% 50.96% 0.54%

6 0 to 1 90%-95% 20 1.83% 5.88% 0.01% 16.74% 60.95% 1.43% 12.67% 51.13% 0.87%

7 1 to 2 90%-95% 20 1.03% 2.26% 0.02% 16.25% 69.88% 0.30% 15.32% 67.41% 0.46%

8 2 to 3 90%-95% 20 1.77% 4.04% 0.08% 12.22% 69.39% 0.44% 10.98% 66.42% 0.08%

9 3 to 4 90%-95% 20 1.18% 3.89% 0.10% 12.56% 76.66% 0.15% 11.29% 72.36% 0.07%

10 4 to 5 90%-95% 20 2.44% 5.85% 0.20% 13.18% 35.52% 1.97% 11.66% 33.06% 3.34%

11 0 to 5 80%-95% 20 1.70% 6.12% 0.04% 22.59% 129.74% 0.29% 18.04% 93.79% 0.40%  

 

5. SUMMARY 

 

In this research we have developed an analytical model for the average number in queue, the variance of the number 

in queue, and queue size distribution for an automated server, which receives inputs from an automated workstation.  

The analytical solution is derived from a discrete time Markov chain model of two automated workstations in series 

with infinite buffer capacity.  We show that the analytical model performs much better on average than two-moment 

G/G/1 approximations applied to such systems.  In such automated systems it is very possible to have large 

coefficients of variation for the time jobs spend in the workstation. The analytical expressions derived are more 

complicated than existing two-moment G/G/1 approximations, yet they are very easily implemented in spreadsheets.  

The next step in this research is to examine more than two workstations in series. This has been conducted in 

Nagarajan and Kim (2006), where two-moment linking equations are developed to estimate the mean and variance of 

workstation interdeparture times. Additional extensions are to workstations that can process multiple jobs in parallel, 

and to series of workstations that have different fixed job processing times. 
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Figure 4. Average percent difference in the time average number in system. The average percent difference is taken over 20 systems within a 

test set. 
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