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AbstractThis paper presents a general tail approximation method for evaluating the Value-at-Risk of any norm of 
random vectors with multivariate regularly varying distributions. The main result is derived using the relation between 
the intensity measure of multivariate regular variation and tail dependence function of the underlying copula, and in 
particular extends the tail approximation discussed in Embrechts et al. (2009) for Archimedean copulas. The explicit tail 
approximations for random vectors with Archimedean copulas and multivariate Pareto distributions are also presented 
to illustrate the results. 
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1. INTRODUCTION 

Value-at-Risk (VaR) is one of the most widely used risk measures in financial risk management (McNeil et al., 2005). 

Given a non-negative random variable X representing loss, the VaR at confidence level p, 10  p , is defined as the 

p-th quantile of the loss distribution:  

 

  : inf{ : Pr{ } 1 }.pVaR X t X t p      

 
In risk analysis for multivariate portfolios, we are often more interested in calculating the VaR for aggregated data than 

for a single loss variable. For a non-negative random vector 
1( ,  ... , )dX X X  representing various losses in a 

multivariate portfolio, we need to calculate ( )pVaR X where the norm  determines the manner in which the data 

are aggregated. Calculating ( )pVaR X  is in general a difficult problem, but its tail estimates as p→1 are often tractable 

for various multivariate loss distributions. Good tail approximations of ( )pVaR X  as p→1 can be used to accurately 

estimate the risk, as measured by the VaR, for extreme losses. 

Tail asymptotics of VaRp  

d

i iX
1

)( , as p→1, for loss vectors with Archimedean copulas and regularly varying 

margins are obtained in Albrecher et al. (2006), Alink et al. (2004, 2007), Embrechts et al. (2009), and Kortschak et al. 
(2009). These tail estimates for the VaR of sums are asymptotically linear functions of the VaR of the univariate margin, 
with a proportionality constant that depends on the tail dependence of the underlying Archimedean copula and marginal 
heavy-tail index. Such asymptotic relations can be also used to analyze the structural properties of the VaR of aggregated 
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sums for multivariate portfolios, such as the subadditivity property of the VaR as well as the property on how the 
dependence and marginal parameters would affect estimates of extreme risks. In this paper, we develop a general and 

more unified approach to derive tail asymptotics of ( )pVaR X , as p→1, for loss vectors that have multivariate 

regularly varying distributions. Our method is based on the link between multivariate regular variation and tail 
dependence functions of copulas, and the tail estimates obtained previously in the literature can be obtained from our 
tail asymptotics as special cases. 

The paper is organized as follows. In Section 2, we define copulas, tail dependence functions and multivariate 
regular variation. The relationship between tail dependence functions and multivariate regular variation obtained in Li 
and Sun (2009) is highlighted. In Section 3, we give a tail approximation of VaRs for loss vectors that follow multivariate 
regularly varying distributions. Explicit approximations for Archimedean copulas, Archimedean survival copulas and 

multivariate Pareto distributions are also presented. For notational convenience, we denote hereafter by [ , ]a b  the 

Cartesian product
1
[ , ]

d

i ii
a b

  where , : [ , ]d da b    and ii ba   for each i. Also denote vector 
1( , , )p p

dw w  

by pw where 0,0  iwp for each i, and : {1, , }I d denotes the index set. The maximum and minimum of a and 

b are denoted as a b and a b respectively. 

2. TAIL DEPENDENCE OF MULTIVARIATE REGULAR VARIATION 

Let
1( , , )dX X X   be a non-negative random vector with distribution F. For any norm  on 

d , tail estimates 

for ( )pVaR X  as p→1 boil down to finding the limit of Pr{|| || }/ Pr{ }iX t X t  as t→∞, di 1 , for which the 

multivariate regular variation suits well. The following definition can be found in Finkenstädt et al. (2004) pp. 185-286 
(also see Basrak (2000)) 

 

Definition 1  A random vector X  or its distribution F is said to be multivariate regularly varying (MRV) if there exists a 

Radon measure μ (i.e., the measure is finite on compact sets), called the intensity measure, on \{0}d  such that  

 

),(
}| |Pr{| |

}Pr{
lim B

t

tB

t






 X

X

                                                                      (1) 

 

for any relatively compact set }{\ 0
dB  that satisfies μ(∂B)=0.  

Note that here 
d is compact and the punctured version }{\ 0

d is modified via one-point uncompactification. 

It must be emphasized that the intensity measure μ in (1) depends on the choice of norm , but intensity measures for 

any two different norms are proportional and thus equivalent. Observe also that for any non-negative MRV random 

vector X , its non-degenerate univariate margins Xi have regularly varying right tails, that is,  
 

,0  ),(}Pr{:)(   ttLttXtF ii
                                                              (2) 

 
where β > 0 is the marginal heavy-tail index and L(t) is a slowly varying function with L(xt)/L(t)→1 as t→∞ for any x > 
0. The multivariate regular variation defined in Definition 1 describes multivariate heavy tail phenomena. The detailed 
discussions on multivariate regular variation and its various applications can be found in Resnick (1987, 2007). 

All the extremal dependence information of an MRV vector X  is encoded in the intensity measure μ, which can 
be further decomposed, using the copula approach, into the rank-invariant tail dependence and marginal heavy-tail index. 

A copula C is a distribution function, defined on the unit cube [0,1]d
, with uniform one-dimensional margins. Given a 

copula C, if one defines 
 

1 1 1 1( , , ) : ( ( ), , ( )),   ( , , ) ,d

d d d dF t t C F t F t t t 
                                                

 (3) 
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then F is a multivariate distribution with univariate margins 
1, , dF F . Given a distribution F with margins 

1, , dF F , 

there exists a copula C such that (3) holds. If 
1, , dF F  are all continuous, then the corresponding copula C is unique 

and can be written as  
1 1

1 1 1 1( , , ) : ( ( ), , ( )),   ( , , ) [0,  1] .d

d d d dC u u F F t F t u u    

 
Thus, for multivariate distributions with continuous margins, the univariate margins and the multivariate rank-invariant 
dependence structure (as described by their copulas) can be separated (Nelsen, 2006). 

Using copulas we can define tail dependence functions. Let 
1( , , )dX X X   have continuous margins 

1, , dF F  and copula C. The lower and upper tail dependence functions, denoted by ( )b  and * ( )b  respectively, are 

introduced in Joe et al. (2010), Klüppelberg et al. (2008), and Nikoloulopoulos et al. (2009) as follows,  
 

1
0

(  ,  )
( ) : lim ,  ( , , ) ;

j d

d
u

C u w j I
b w w w w

u


 

 
     

 

*

1
0

(1  ,  )
( ) : lim ,  ( , , ) ,

j d

d
u

C u w j I
b w w w w

u


 

  
   

                                            
 (4) 

  

provided that the limits exist, where C denotes the survival function of C. Since the lower tail dependence function of a 

copula is the upper tail dependence function of its survival copula, we only focus on upper tail dependence in this paper. 

Define the upper exponent function *( )a    of copula C as  

 
* | | 1 *

,

( ) : ( 1) ( ,  ),S

S i

S I S

a w b w i S






  

                                                              (5) 

 

where ) ,(* Siwb iS   denotes the upper tail dependence function of the margin of C with component indices in S. It is 

shown in Joe et al. (2010) that tail dependence functions )} ,({ * Siwb iS   and the exponent function a*(w) are uniquely 

determined from each other. 
The link between tail dependence functions and multivariate regular variation is obtained in Li and Sun (2009) as 

follows.  
 

Theorem 1  Let 
1( , , )dX X X   be a non-negative MRV random vector with intensity measure μ, copula C and 

continuous margins dFF ,,1  . If the margins are tail equivalent (i.e. 1)(/)( tFtF ji as t→∞ for any ji  with 

heavy-tail index β > 0 (see (2)), then the upper tail dependence function * ( )b  exists and  

 

1. 
1/

*

1

([ , ])
( )

([1, ] )d

w
b w














 
 and 

1/
*

1

(([0, ]) )
( )

(([0,  1] ) )

c

d c

w
a w














; 

 

2.  
* -

*

([ , ]) ( )

([0,  1] ) (1)c

w b w

a






  and 

* -

*

([0, ] ) ( )

([0,  1] ) (1)

c

c

w a w

a




 . 

 
Therefore, the tail dependence function and intensity measure are equivalent in the sense that the Radon measure 

generated by the tail dependence function is a rescaled version of the intensity measure with marginal scaling functions 
being of Pareto type. In contrast, the tail dependence function describes the rank-invariant extremal dependence 
extracted from the intensity measure. 

Since intensity measures for any two different norms are proportionally related, the rescaled intensity measures, 

such as 
1( ) / ([1, ] )d  

   and ( ) / ([0,  1] )c  , do not depend on the choice of norms.  
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3. TAIL APPROXIMATION 

In this section, we derive the tail asymptotics for ( )pVaR X  as p→1, for any fixed norm  on 
d .The results 

discussed in Embrechts et al. (2009) can be obtained by taking the 
1l -norm and the tail dependence function of 

Archimedean copulas. 

Consider a non-negative MRV random vector 
1( , , )dX X X   with intensity measure μ, joint distribution F and 

margins 
1, , dF F  that are tail equivalent with heavy-tail index β > 0. Without loss of generality, we use F1 to define 

the following limit:  
 

*

1

Pr{ }
( , ) : lim ,

( )t

X t
q b

F t





                                                                    (6) 

 

where b* denotes the upper tail dependence function of X . This limiting constant depends on the intensity measure μ, 

which in turn depends on heavy-tail index β, tail dependence function b* and norm . 

 

Theorem 2  If F is absolutely continuous and the partial derivative 
*

1( ) /d

db v v v   exists everywhere, then 

*

||  || ( , )q b has the following representation  

 
* *

*

||  || 1/

1 1

( ) ( )
( , ) ( 1)   

d d
d

W W
d d

b w b v
q b dw dv

w w v v






 

 
  

                                                  (7) 

     

where { 0 : 1}W w w   and 
1/ 1/{ 0 :|| || 1}W v v     .  

 
Proof. It follows from (1) that  
 

,
)(

)(

}Pr{

}Pr{

}Pr{

}| |Pr{| |

111 W

W

tW

tW

tX

t















X

XX
as t→∞,  

 

where { : 1}W w w  , and  1 1: 1W w w  . Let 
1( ) : ( ) / ( )W     , then by Theorem 1 (1), )(~  is the measure 

generated by 
*([ , ]) ( )w b w    . Thus the partial derivative  

 
*

1

1 1

([ , ]) ( )
( ) : ( 1) ( 1)

([1, ] )

d d
d d

d

d d

w b w
w

w w w w












  
    

    
 

 

exists everywhere for w > 0. Since F is absolutely continuous, )(~  is absolutely continuous with respect to the 

Lebesgue measure, it follows from the Radon-Nikodym Theorem that  
 

*

||  ||

1

( )
( , ) ( ) 

( ) W

W
q b w dw

W


 




   , 

 

and by the uniqueness of the Radon-Nikodym derivative, ( ) 0w   is the Radon-Nikodym derivative of the intensity 

measure ~ with respect to the Lebesgue measure. Therefore, using Theorem 1 (1) we obtain the first expression in (7). 

The second expression in (7) follows by taking variable substitutions.  
 
Remark 1   

1. It follows from the non-negativity of the Radon-Nikodym derivative ( )w that  

 



 
Sun and Li: Tail Approximation of Value-at-Risk under Multivariate Regular Variation  
IJOR Vol. 7, No. 4, 40-50 (2010) 

 

44 

*
1

1 1

1 ( )
0 ( ) ,

dd

id
i d

b v
w w

v v









 

 
 with ,1 ,0 , diwwv iii 


 

 

which shows that *

1( ) / 0d

db v v   v  for all v ≥ 0. It is easy to see that 1/ 1/W W     for any β ≤ β', and thus by 

(7), *

||  || ( , )q b
is non-decreasing in β. This extends Theorem 2.5 in Alink et al. (2004) to multivariate regular variation 

with respect to any norm.  

2. If we choose  to be the  -norm, i.e., || || max{ ,  1, , },iw w i d    then 1/

1{ 0 : 1}.d

i iW w w

     

In this case, *

||  || ( , )q b
 is independent of β and depends on the tail dependence function only.  

 

The limiting proportionality constant *

||  || ( , )q b
 takes particularly tractable forms for Archimedean copulas as 

the following corollaries show. 
 

Corollary 1 (Archimedean Copula)  Consider a random vector ), ... ,( 1 dXX  which satisfies the assumptions of 

Theorem 2. Assume that ), ... ,( 1 dXX  has an Archimedean copula 
1

1 1
( , , ) ( ( )),

d

d ii
C u u u 


    where the 

generator ψ is regularly varying at 1 with tail index 1 . Then  

 

* | | 1 1/

||  || 11/

,1

( , )  ( 1) ( )  ,[ ]
d

S

j d
W

j SS I Sd

q b v dv dv
v v

 






 




  

  
 

                                    

 (8) 

 

where 
1/ 1/{ 0 :|| || 1}W v v     . 

 

Proof. From Joe et al. (2010), the upper tail dependence function *( )b v  can be expressed by the upper exponent 

functions of the margins:  
 

* | | 1 *

,

( ) : ( 1) ( ,  ),S

S i

S I S

b v a v i S






  

  

 

where * *

0, ( ,  ) lim ( )
iS i v i Sa v i S a v    is the upper exponent function of the margin of C with component indices in S. 

It is given in Genest et al. (1989) that the upper exponent function of Archimedean copula is * 1/

1
( ) ( ) .

d

jj
a v v 


   

Therefore, 
 /1* )() ,(  


Sj jiS vSiva and the result follows.  

 

Corollary 2 (Archimedean Survival Copula)  Consider a random vector ), ... ,( 1 dXX  which satisfies the 

assumptions of Theorem 2. Assume that ), ... ,( 1 dXX   has an Archimedean copula ),,( 1 duuC   

 
 d

i iu
1

1 )),((  where the generator ϕ is regularly varying at 0 with tail index 0  . Then  

 
d

* 1/

||  || 1

i 11

( , )  ,( )
d

i d
B

d

q b x dx dx
x x

   








 
                                                    (9) 

 

where 
1{ : 1}B x x  . 

 

Proof. It is given in Joe et al. (2010) that the upper tail dependence function of ), ... ,( 1 dXX   is 

* 1/

1
( ) ( ) .

d

jj
b w w   


   Therefore,  
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* * 1/

||  ||

11 1

( , ) ( 1) ( ) ( 1)  ,( )
d d d

d d

j
W W

jd d

q b b w dw w dw
w w w w

    





 
   

   
   

where { : 1}W w w  . If we substitute 1
ix  for iw , then we obtain (9).  

 
Remark 2  

1. In Corollary 1, if we choose  to be the l -norm, then the explicit expression of the limiting constant can 

be easily computed for Archimedean copulas. Take the bivariate case for example,  
 

2
* 1/

1 2 1 2 1 21/

1 2

( , ) [ ( ) ] l
W

q b v v v v dv dv
v v

  


 


   

   

 

where 
1/ 1/ 1/

1 2{ : 1}W v v v       }. Hence,  

1 2 1 2

2
1 1 1 1

* 1/

1 2 1 2 1 2
0 0 0 0 0 0

1 2

1/ 1 1/ 1 1

1 2 1 2 0 0 1 2 1 2 0 0

1/

( , ) [ ( ) ] 

    2[ ( ) ]   [ ( ) ]  

    2 ,

| | | |

( )l

v v v v

q b v v v v dv dv
v v

v v v v v v v v

  

     






 



   


     

 

       



     

 

 
which only depends on the tail dependence of the Archimedean copula.  

2. In Corollary 2, if we choose  to be the 
1l -norm, i.e., 

1

d

ii
x x


  for non-negative xi, i=1,…,d, then the 

result is reduced to the limiting constant obtained in Proposition 2.2 of Embrechts et al. (2009). Using the 1 -norm is 

the most common way to aggregate data. The monotonicity property of 
1

*( , )lq b  with respect to for d ≥2 is also 

given in Embrechts et al. (2009): 
1

*( , )lq b  is increasing in when β > 1; 
1

*( , )lq b  is decreasing in  when β < 1; 

1

*( , )lq b d   when β = 1. It is further shown that for 0  and β > 1 (or β < 1), VaR is asymptotically subadditive 

(superadditive), i.e., 
1

( )
d

p ii
VaR X

 <
1

( )
d

p ii
VaR X

 (or 
1

( )
d

p ii
VaR X

 >
1

( )
d

p ii
VaR X

 )  for p near 1.  

 
Heavy-tailed scale mixtures of multivariate exponential distributions also have tractable tail dependence functions 

(Li, 2009, Li and Sun, 2009) and thus the limiting constant ),( *
|||| bq     can be calculated using Theorem 2 for these 

distributions. Consider the following multivariate Pareto distribution: 
 

1

1( ,..., ) , , ,( )d

d

TT
X X X

Z Z
  

                                                               
 (10) 

 

where Z is a positive random variable and the random vector ), ... ,( 1 dTT , independent of Z, has a min-stable 

multivariate exponential distribution with identical margins, that is, the distribution G of ), ... ,( 1 dTT satisfies that for all 

,dw
1 1min{ / ,..., / }d dT w T w   has an exponential distribution (see Joe (1997) pp. 174-175 for details). The 

well-known Pickands representation shows that the survival function G can be written as ( ) exp{ ( )}G t P t  , where  

 

1( ) : ( ),
d

d

i i i
S

P t s t U ds   

 

is called the Pickands dependence function, and
1

: { 0 : 1},
dd

ii
S s s


    U is a finite measure on 

dS  and 

( )
d i

S
sU ds  for .1 di   Observe that  P t is homogeneous of order 1, that is,     P ct cP t for any c ≥ 0. 

Let Z have the Laplace transform , and then the survival function F of (10) can be written as  
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( ) ( )( ) ( ) ( ) ( ( )),P Zx ZP xF x E e E e P x     

 

with the marginal survival function ),()( xxFi   .1 di    

Assume that ),(x and thus ,)(xFi is regularly varying at ∞ with heavy-tail index β > 0 in the sense of (2). The 

upper tail dependence function of X in (10) can be calculated explicitly as follows,  
 

* ( ) ( ( )) ( )
( ) lim lim

( )( )
( )

t t
i

F tw tP w P w
b w

tF t



  



 
                                                       (11) 

 
For example, if Z in (10) has the gamma distribution with shape parameter (Pareto index) β >0 and scale parameter 1, 

then ( ) ( 1) .x x    Note that in this case R = 1/Z has an inverse gamma distribution with shape parameter β >0 and 

scale parameter 1. It is known that R is regularly varying with heavy-tail index β and its survival function is given by  
 

( ,1/ )
Pr{ } 1 ,   0,  0,

( )

r
R r r







    


 

 

where 
1

1/
( ,1/ ) t

r
r t e dt


     is known as the upper incomplete gamma function and 1

0
( ) tt e dt


     is the 

gamma function.  

If the distribution G of ), ... ,( 1 dTT  in (10) is absolutely continuous, then the d-th order partial derivative of the 

Pickands dependence function  P w exists, and thus the limit ),( *
|||| bq     for such X  can be obtained by using 

Theorem 2. Note that if ), ... ,( 1 dTT  in (10) are independent, then the survival copula of X is Archimedean, and thus 

(10) includes Archimedean copulas as a special case. In contrast to Archimedean copulas, (10) models local dependence 

of ), ... ,( 1 dTT on top of the global dependence described by the mixture.  

 

Example 1  Let ), ... ,( 1 dTT have the following joint distribution   

 

1 1

( ) : ( ( ), ( )) ( ),
d

ij i i j j i i

i j d i

G t K H t H t H t
   

    

 

where ( ) exp{ }i iH t t  , ,1 di  and   

 
1/

1 2 1 2( , ; ) exp{ [( log  ) ( log  ) ] },ij ij ij

ij ijK u u u u
  

       1,1 21  uu  

 

is known as the extreme-value copula with dependence parameter ij  (Genest and Rivest, 1989). Marginally, iT  has 

the exponential distribution ( ) 1 exp{ }iG t t    where .d   Jointly, iT and jT  are coupled with copula .ijK  

Clearly, the Pickands dependence function of G is given by  
 

1/

1 1

( ) log ( ) ( )[ ]ij
ij ij

d

i j i

i j d i

P t G t t t t
 


   

       

 
It then follows from (11) that  
 

1/
*

1 1

( ) ( ) .[ ]ij
ij ij

d

i j i

i j d i

b w d w w w
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The limit ),( *
|||| bq     can be obtained by using Theorem 2.  

 
Note that the absolute continuity of F in Theorem 2 is also necessary for (7). Here we give the bivariate case as an 

example. 
 

Example 2 (Bivariate Pareto Distribution of Marshall-Olkin Type)  The Marshall-Olkin distribution with rate 

parameters },,{ 1221   is the joint distribution of 1211 : EET   and ,: 1222 EET   where }}2,1{,{ SES  

is a sequence of independent exponentially distributed random variables, with SE  having mean ./1 S  In the 

reliability context, 1T  and 2T can be viewed as the lifetime of two components operating in a random shock 

environment where a fatal shock governed by the Poisson process with rate S  destroys all the components with 

indices in }2,1{S  simultaneously (Marshall et al., 1967). In credit-risk modeling, 1T  and 2T can be viewed as the 

times-to-default of various different counterparties or types of counterparty, for which the Poisson shocks might be a 
variety of underlying economic events (Embrechts et al., 2003). 

Let ),( 21 RTRT  be defined as in (10), where R = 1/Z and Z follows a gamma distribution with shape parameter  

β>0 and scale parameter 1. From Li and Sun (2009), the bivariate distribution of ),( 21 RTRT  is regularly varying, and 

its upper tail dependence function is given by  
 

).(
)()(

),(

2

22

1

11
21

*









TE

Tw

TE

Tw
Ewwb                                                              (12) 

 

Since iT  is exponentially distributed with mean )/(1 12 i  for  i =1,2, we have   ))/(1(!)( 12 iiTE  

for any positive integer β, thus  
 

.])()([
!

1
),( 2122

/1
21121

/1
121

*  


TwTwEwwb   

  
Consider 
 

1 2 12

1/ 1/ 1/ 1/
1 12 1 2 12 2 1 12 1 2 12 2

1/ 1/

1 1 12 1 2 2 12 2

1 1/ 1 1/

1 1 12 1 2 2 12 2

1/

( ) ( ) ( ) ( )

Pr{[ ( ) ( ) ] }

Pr{ ( ) ( / ) ,  ( ) ( / ) }

exp  { ( ) }.
w w w w

w T w T t

T t w T t w

t   

  

 

   

       

   

    

 
    

   

    

 

 

 
Thus, for any positive integer β,  
 

1/1 2 12

1/ 1/ 1/ 1/
1 12 1 2 12 2 1 12 1 2 12 2

1 2 12

1/ 1/ 1/ 1/
1 12 1 2 12 2 1 12 1 2 12 2

*

1 2 ( ) ( ) ( ) ( )0

1

( ) ( ) ( ) ( )0

1
( , ) exp  

!

1
              exp  

!

       

{ ( ) }

{ ( ) }

w w w w

w w w w

b w w t dt

s s ds



   

   

  

       

  

       








 
    




 
    

 

 





1 2 12

1/ 1/ 1/ 1/
1 12 1 2 12 2 1 12 1 2 12 2

.
( ) ( ) ( ) ( )

       ( )
w w w w   

   

       


 

    


                          

 (13) 

                

Observing the fact that 
*b  is not differentiable at ),( 21 ww with .)()(

/1
2122

/1
1121


 ww    

Consider a simple case where 021    and .0,12   In this case 21 TT   and .),( 2121
* wwwwb   

Observe that 0./),( 2121
*2  wwwwb  for any ,21 ww   and thus it follows from (7) that 0),( *

||  ||  bq   for 

any norm . On the other hand, however, (7) does not hold because it follows from (6) that  
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* 1

||  ||

1

Pr{2 }
( , ) lim 2 0.

Pr{ }t

RT t
q b

RT t





  


 

 

Remark 3  In Example 2, if we set ,012  then .2,1 ,  iET ii  In this case, it is known that the survival copula 

of ),( 21 RTRT  is a bivariate Clayton copula. On the other hand, (13) becomes .)(),(
/1

2
/1

121
*  

 wwwwb  

This is the upper tail dependence function of ),( 21 XX   from the bivariate case of Corollary 2, where the 

dependence parameter is 1/β. 

 
The next theorem, an application of Theorem 2, provides a method of obtaining VaR approximations in higher 

dimensions from one-dimensional VaR.  
 

Theorem 3  Consider a non-negative random vector 
1( ,  ... , )dX X X  with MRV distribution function F and 

continuous margins .2 ,,,1 dFF d  Assume that the margins are tail equivalent with heavy-tail index β >0, and the 

tail dependence function * 0.b   Then 

 

* 1/
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1

1

(|| ||)
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Proof. Let G be the distribution function of X . From (6), 
1

( ) *

||  ||( )
( , )

G t

F t
q b as t→∞, i.e., 

||  ||

( )
,1 *( , )

( )
G t

q b
F t



 where 

‘≈’ denotes tail equivalence. Hence we have 1 * 1

1 ||  ||( ( , ) ( )).t F q b G t 

  

Define ).(: tGu   Then 1 1 * 1

1 ||  ||( ) ( ( , ) ).G u F q b u  

  Since 1F  is regularly varying at ∞ with heavy-tail index 

β > 0, we have from Proposition 2.6 of Resnick (2007) that )(1
1 tF   is regularly varying at 0, or more precisely, 

1 1 1/

1 1( ) / ( )F uc F u c    as 
 0u for any c >0. Thus 1 * 1 1 * 1/

1 ||  || 1 ||  ||( ( , ) ) / ( ) ( , ) .F q b u F u q b    

   Therefore, 

1 * 1/ 1

||  || 1( ) ( , ) ( ),G u q b F u 

  i.e., 1 1 * 1/

0 1 ||  ||lim ( ) / ( ) ( , ) .u G u F u q b  

    Replace u by 1−p and we get (14). 

 

This result gives an asymptotic estimate of ( )pVaR X  which does not generally have a closed form expression. The 

closed forms of tail dependence functions occur more often than for explicit copula expressions. This is because we can 
obtain tail dependence functions from either explicit copula expressions or the closure properties of the related 
conditional distributions whose parent distributions do not have explicit copulas. Using Theorems 2 and 3, when the 

confidence level is close to 1 and the tail dependence functions exist, we can take 
 /1*

||  || ),( bq  VaRp(X1) as an 

approximation to the VaR of the normed (aggregated) loss. We illustrate our results using an insurance premium pricing 
model with risk-adjusted loading. 

 
Example 3  The calculation of premium is usually affected by various elements: pure risk premium, risk loading, 
administrative expenses, and loading for investment risk, credit risk, operational risk, etc. We consider here a simplified 
premium pricing model that consists of the pure risk premium and risk loading only. 

Let X denote the total claim incurred for one insurance portfolio. The pure risk premium is the mean E(X) of loss 
X, and the risk loading depends on the excess of a risk measurement over the mean loss. If the risk measure we use here 
is the Value-at-Risk, then the risk loading depends on the excess VaRp(X) E(X) of the p-th quantile over the pure risk 
premium. That is, if we hold the risk capital VaRp(X), we know that we would not have ruin with probability p, which is 
usually close to 1. If an insurance company receives the capital VaRp(X) E(X) from investors and invests the capital at 

the risk-free rate 0r (e.g., in government bonds), the company needs to pay the investors at a higher rate 0rr  , 

because their investment is exposed to risk. Thus, the premium paid by the policyholder in this simple pricing model is 
the sum of the pure risk premium and risk loading: 
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0 0 0( ) ( )( ( ) ( )) (1 ) ( ) ( ) ( ).p pE X r r VaR X E X r r E X r r VaR X         

 
In the univariate case, the loss distribution and model parameters can be fitted from loss data, and the calculation of the 
premium is straightforward. 

If we consider losses 21, XX  of two insurance portfolios, then the premium pricing involves VaRp( 21 XX  ), 

whose evaluation becomes non-trivial because 1X and 2X are joint distributed with bivariate non-normal distribution. If 

a bivariate distribution with Archimedean copula and heavy-tailed, identically distributed margins fits to the bivariate loss 

data for 21, XX , then the tail estimate to the VaR as p goes to 1 can be obtained using our results. More precisely, the 

premium for the aggregation of these two portfolios is estimated as, when p is close to 1, 
 

* 1/

0 1 0 ||  || 12(1 ) ( ) ( ) ( , ) ( ),pr r E X r r q b VaR X     

 

where β is the heavy-tail index of the margin, and 
*b  is the upper tail dependence function of the Archimedean copula. 

Using Corollaries 1 and 2, ),( *
||  || bq  can be calculated numerically with estimated model parameters. The premium 

pricing for the aggregated portfolio then proceeds as that in the univariate case. Note that the extremal dependence of 

1X and 2X  is encoded in the constant ),( *
||  || bq  in the premium pricing. 

4. CONCLUDING REMARKS 

In this paper, we developed a general tail approximation method for evaluating the VaR of any norm of random vectors 
with multivariate regularly varying distribution. Our method is based on the relation between the intensity measure of 
multivariate regular variation and tail dependence function of the underlying copula, and extends various results in the 
literature. Our results are illustrated by an insurance premium pricing model. 

Explicit forms of VaR approximations for Archimedean copulas and multivariate Pareto distributions can be 
derived directly from our results. As mentioned in Remark 2, the additivity properties of VaR under Archimedean 
copulas depend on the heavy-tail index of the margins and the copula generators. Whether and how similar structural 
properties hold for multivariate regular variation are worth further investigation. 

 

 

ACKNOWLEDGEMENTS 

 

The authors would like to thank a referee for his/her comments that lead to an improvement of the presentation of this 
paper. 

 
REFERENCE 

1. Albrecher, H., Asmussen, S. and Kortschak, D. (2006). Tail asymptotics for the sum of two heavy-tailed dependent 

risks. Extremes, 9: 107-130. 

2. Alink, S., Löwe, M. and Wüthrich, M. V. (2004). Diversification of aggregate dependent risks. Insurance: Mathematics and 

Economics, 35: 77-95. 

3. Alink, S., Löwe, M. and Wüthrich, M. V. (2007). Diversification for general copula dependence. Statistica Neerlandica, 61: 

446-465.  

4. Basrak, B. (2000). The sample autocorrelation function of non-linear time series. PhD Dissertation, University of 

Groningen. 

5. Embrechts, P., Lindskog, F. and McNeil, A. (2003). Modeling dependence with copulas and applications to risk 

management. Handbook of Heavy Tailed Distributions in Finance, ed. S. Rachev, Elsevier, pp.329-384. 

6. Embrechts, P., Neslehová, J. and Wüthrich, M. V., (2009). Additivity properties for Value-at-Risk under Archimedean 

dependence and heavy-tailedness. Insurance: Mathematics and Economics, 44(2): 164-169. 

7. Finkenstädt, B. and Rootzén, H. (2004). Extreme Values in Finance, Telecommunications, and the Environment. Chapman & 

Hall/CRC, New York. 



 
Sun and Li: Tail Approximation of Value-at-Risk under Multivariate Regular Variation  
IJOR Vol. 7, No. 4, 40-50 (2010) 

 

50 

8. Genest, C. and Rivest, L.-P. (1989). A characterization of Gumbel’s family of extreme value distributions. Statistics and 

Probability Letters, 8: 207-211. 

9. Joe, H. (1997). Multivariate Models and Dependence Concepts. Chapman & Hall, London. 

10. Joe, H., Li, H. and Nikoloulopoulos, A.K. (2010). Tail dependence functions and vine copulas. Journal of Multivariate 

Analysis, 101(1): 252-270. 

11. Klüppelberg, C., Kuhn, G. and Peng, L. (2008). Semi-parametric models for the multivariate tail dependence 

function-the asymptotically dependent. Scandinavian of Journal of Statistics, 35(4): 701-718. 

12. Kortschak, D. and Albrecher, H. (2009). Asymptotic results for the sum of dependent non-identically distributed 

random variables. Methodol. Comput. Applied Probability, 11: 279-306.  

13. Li, H. (2009). Orthant tail dependence of multivariate extreme value distributions. Journal of Multivariate Analysis, 100: 

243-256.  

14. Li, H. and Sun, Y. (2009). Tail dependence for heavy-tailed scale mixtures of multivariate distributions. Journal of 

Applied Probability, 46(4): 925-937. 

15. Marshall, A. W. and Olkin, I. (1967). A multivariate exponential distribution. Journal of the American Statistical Association, 

2: 84-98. 

16. McNeil, A. J., Frey, R. and Embrechts, P. (2005). Quantitative Risk Management: Concepts, Techniques, and Tools. Princeton 

University Press, Princeton, New Jersey. 

17. Nelsen, R. (2006). An Introduction to Copulas. Springer, New York. 

18. Nikoloulopoulos, A.K., Joe, H. and Li, H. (2009). Extreme value properties of multivariate t copulas. Extremes, 12(2): 

129-148. 

19. Resnick, S. (1987). Extreme Values, Regular Variation, and Point Processes. Springer, New York. 

20. Resnick, S. (2007). Havey-Tail Phenomena: Probabilistic and Statistical Modeling. Springer, New York. 


