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Abstract  We introduce a dynamic and stochastic transportation problem consisting of two subproblems. For 

parcel transportation in hub-and-spoke networks, swap containers are used to carry out hub-to-hub shipments. This 

constitutes a pickup and delivery problem on the operational level. On the tactical level, empty swap containers are 

balanced over the hub-network in order to match the stochastic demand of empty swap containers in future periods. 

This two-level problem is referred to as Stochastic Swap Container Problem. In this paper, mathematical models and 

integrated solution strategies considering stochastic arrival patterns for shipments are developed. We present a 

comprehensive computational study comparing myopic and anticipating planning approaches. 

  

Keywords  Allocation, dynamic stochastic transportation problem, routing, general pickup and delivery problem, 

model integration. 

 

 

1. PROBLEM DESCRIPTION 

Large hub-and-spoke networks are backbones for parcel service providers (Gruenert and Sebastian, 2000). Parcels 

are collected at spokes before they are consolidated within sending hubs. After shipment to destination hubs, parcels 

are decollated and delivered to their final customer destinations at spokes. In the following, we focus on hub-to-hub 

shipments, which are typically performed by 3rd party carriers paid on the basis of traveled distances. 

In Europe, for hub-to-hub transportation typically trailer trucks designed for swap containers are used. Swap 

containers are self-contained transportation units with a standardized size of 24.5 foot length, 8.2 foot width and a 

maximal gross weight of 16 tons. Swap containers can be deposited without any extra equipment by pulling out the 

foldable put-down feet. A trailer truck can transport at most two swap containers. 

The problem under consideration encounters the allocation and routing of swap containers. On the tactical level, 

swap containers have to be balanced over the hub-network in order to match the stochastic demand of empty swap 

containers in future periods. The routing of empty as well as full containers constitutes a pickup and delivery problem 

on the operational level of planning.  This two-level problem is referred to as Stochastic Swap Container Problem 

(SSCP), compare Huth and Mattfeld (2009) for its deterministic counterpart.  

In the following, we discuss the SSCP in more detail and propose two concepts in order to solve the problem. The 

main issue of Section 2 is the development of transportation models to solve the allocation subproblem by considering 

stochastics explicitly. In Section 3, the routing subproblem is discussed and a mathematical model as well as a 

meta-heuristic is sketched. In Section 4, we introduce four strategies, which implement the concepts using the 

optimization models developed in Sections 2 and 3. In Section 5, the strategies are investigated by means of a 

computational study before important findings are discussed. Section 6 summarizes the paper. 

 

1.1 The Stochastic Swap Container Problem 

The main task of the considered problem is the transport of swap containers between every pair of hubs. Every 

swap container represents one transportation request (TR). The construction of distance minimal routes visiting several 

hubs allows for combining TR on trailer trucks. This constitutes a general pickup and delivery problem whit a truck 
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capacity of two units. A secondary, either important task is the supply of empty swap containers (empties) in order to 

satisfy the demand of swap containers in future periods. Whenever a lack of empties occurs due to imbalances of 

containers in the network, an allocation request (AR) for an empty swap container is generated. The selection of 

appropriate supply nodes for empties can be formulated as a transportation problem.  

 

 

Figure 1. The SSCP in the course of time 

 

Figure 1 depicts the tasks to be performed over the course of time. First, swap containers are loaded in sending hubs. 

Afterwards, the allocation of AR is planned. For this task, the currently known and the anticipated future TR are 

considered. Both types of requests, TR and AR are routed in an integrated way. During nighttime, the requests are 

dispatched followed by the unloading of swap containers in the receiving hub in the morning. At this time, TR to be 

handled in the next night become definite. If the assumption about demanded empties is shaped up as wrong, i.e. a 

need for empties becomes obvious, some repair action of the former plan is needed. To this end additional AR are 

generated and carried out during daytime. This entire procedure is repeated day by day. 

 

1.2 Decision levels 

On the strategical level, infrastructure decisions are made for a planning horizon exceeding one year. Tactical 

planning bases on the strategic decisions and varies in the planning horizon considered. Periodically executed routes 

and resource allocations are mid-term decisions subject to frequency service network design. In particular we focus on 

dynamic service network design, where adaptations of mid-term plans become necessary due to unforeseen demand 

fluctuations. Beneath the tactical decision level, operational decisions include the routing and scheduling of trucks and 

other resources on a daily basis. Figure 2 depicts relevant decision levels as described by Crainic (2003). 

 

 

Figure 2. Decision levels in logistics and particular in the SSCP 

Wieberneit (2008) states that the costs for the services occur on the operational planning level. Considering this, the 

operational planning level has to be incorporated into the tactical planning problem. This conclusion may be important 

for the SSCP, because we have two subproblems on hand. The allocation problem implements the tactical level of the 

dynamic service network design by considering demand information about future periods. The routing of TR and AR 

is a purely operational issue. Analogous to Wieberneit we can state, that the anticipation of future demand on the level 

of the dynamic service network design may gain savings with respect to routing. 
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We see three ways of supporting operations on the tactical level. First, the reach of allocation planning may be 

extended by means of dynamic, multi-period models. Second, the demand variation may be covered by means of 

dynamic and stochastic models. Third, synergies with respect to routing may be gained by integration of TR and AR on 

the same truck. In the following, possible benefits are demonstrated by example. First, the impact of a dynamic 

allocation on the tactical level is illustrated. Second, an example for an integrated routing of several transportation 

requests is presented.   

 

1.2.1 Dynamic allocation 

The time-space network in Figure 3 shows nodes of a network with the supply and demand situation in each period. 

A solution of a one-period transportation model supplies the demand of Node 1 in Period 2 by providing an empty 

container from Node 2. A further demand of Node 2 in Period 3 is supplied by Node 3. Two shipments are necessary 

in this example. To the contrary, the solution of a dynamic, multi-period model shown in Figure 3b overcomes this 

weakness by satisfying the demand of Node 1 in Period 2 with the provision of an empty container from Node 3. This 

way the shipment for satisfying the demand of Node 2 in Period 3 is saved already on the tactical level. The stochastic 

demand of future periods may be even better supported by extending the dynamic transportation model to a dynamic 

and stochastic one.  

 

 
 

Figure 3. Two solutions for a dynamic transportation problem 

(a) Myopic solution (b) Anticipating solution 

1.2.2 Integrated routing 

Figure 4 shows the inferiority that arises from implementing the solution of the transportation model on an 

operational level. Suppose a demand of two empties in Node 4 and a possible supply of one empty swap container in 

each of the remaining nodes of the example (c.f. Figure 4a). The edge weights express distances between nodes. The 

task of the transportation problem is to select two of the supply nodes. Because of the shorter direct distances, the 

solution given in Figure 4b applies: Node 1 and Node 2 supply Node 4 with a total distance of 11 units. By considering 

a truck trailer with the capacity of two units, routing features entrainment by supplying one empty from Node 2, 

bypassing Node 3 and picking up the second demanded empty swap container. The resulting distance is 10 units, c.f. 

Figure 4c. This feature, referred to as entrainment and detouring in the following, benefits from a larger number of routing 

requests because of the bigger potential for entrainments. 

 

 

 
 

Figure 4. Allocation problem and the according solution of the routing problem 

(a) Example (b) Solution 1 (c) Solution 2 

 

(a) (b) 

(a) (c) (b) 
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As we have seen, not every detail being subject to the routing model can be covered on the tactical level already. 

Thus, tactical planning may generate inferior solutions with respect to options offered by the routing model.  

Furthermore, the variation in demand may render dynamic planning useless. In order to assess possible benefits of 

stochastic and dynamic planning in the case of the SSCP, we are going to compare myopic planning (MP) with anticipating 

planning (AP).  

 

1.3 Concepts of planning 

In the following, a myopic approach and its anticipating counterpart are developed on a conceptual level.  

 

1.3.1 Myopic planning 

MP confines to a one-period transportation model and makes the decisions for each period of the planning horizon 

independently of future periods. Figure 5 depicts its conceptual model. The TR for the current period are routed at 

night leading to a certain pre-allocation configuration of the network (Arrow a). Thereby, the demand of empties for 

the next period becomes known (Arrow b) and a transportation problem is formulated (Arrow c). The output of this 

model is flows of empties from supply to demand nodes that are interpreted as AR (Arrow d). These AR are input to 

routing (Arrow e). Since TR have been dispatched by night already, the routing of AR has to be performed 

independently of TR during daytime, c.f. Figure 1. 

 

Figure 5. Myopic planning process 

 

The operational routing considers objective    for TR and for AR in the same way. A typical goal is the 

minimization of the overall distance driven in a single period. Things are becoming slightly more difficult for the 

objective    of the transportation model. Arrow f in Figure 5 indicates that an allocation at least partially determines 

the demand of swap containers for the next period. Therefore objective    should be formulated with respect to this 

dynamic property and may contradict the short term oriented objective   . A dynamic transportation model as 

proposed in the example of Figure 3b supports reasonable allocations over time.  

 

1.3.2 Anticipated planning 

Since the future is uncertain, a dynamic model introduces the need to incorporate stochastics. Since TR is now 

considered as stochastic data, also the derived demand of swap containers is stochastic. Figure 6 depicts the scheme for 

the modified anticipating planning process. 
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Figure 6. Anticipating planning process 

 

The probability of TR impacts the future demand (Arrow g). A dynamic stochastic allocation anticipates this 

demand and selection decision considering objective Za(t) results in anticipated allocation requests (AAR) (Arrow h). 

Different to MP where AR had to be routed separately, in AP anticipation allows an integrated routing of AAR and TR, 

which may exploit synergies with respect to integrated routing. However, AAR may not exactly meet the demand 

observed in the forthcoming periods. Therefore a short termed allocation with respect to the actual demand observed 

becomes necessary (Arrow i). These repair allocation requests (RAR) are regarded as the non-anticipating counterpart of 

AR as shown for MP. Finally, the resulting AAR as well as RAR impact the future demand (Arrow k).  

For the SSCP, we have discussed MP and AP on a conceptual level. The following questions remain to be answered: 

1. AP incorporates stochastic future demand. Does dynamic stochastic planning outperform its deterministic 

counterpart? 

2. Routing partially distorts the results of allocation. Is anticipation worth the effort in the SSCP case? 

3. Different hub networks and demand distributions may require different ways of planning. Is there just one 

preferred strategy available?   

In order to answer the above questions, the necessary transportation and routing models and methods are described 

in the following two sections, before the developed optimization models are integrated into the aforementioned 

concepts resulting in strategies. These strategies are investigated in the sequel of this paper.  

 

2. THE ALLOCATION OF EMPTY RESOURCES 

The allocation of resources belongs to the class of network problems (Ford and Fulkerson, 1962; Wagner, 1969; 

Powell, 1988; Hillier and Liebermann, 2005). Various models have been developed focusing on different particular 

problems under consideration (Klein, 1967; White and Bomberault, 1969; Ahuja et al., 1993; Chen and Chen, 1993; 

Crainic et al., 1993; Klein et al., 1995). We describe and develop multiple mathematical models required for the 

implementation of the conceptual models introduced. Starting point is the model of Hitchcock-Koopmans followed 

by the consideration of dynamics. Third, a mathematical model for the dynamic stochastic model with recourse is 

introduced. 

 

2.1 The Stochastic Swap Container Problem 

The simplest form of a transportation problem is the classical Hitchcock-Koopman Transportation Problem 

(Hitchcock, 1941). Assuming network supply and demand nodes, this problem seeks the cost-minimal flows of goods 

from the supply to the demand nodes. The following mathematical model TP depicts this problem. 

 

(        )      ∑∑      
      

  (1) 

Subject to:  

∑           

   

      (2) 

∑      
   

            (3) 



8 
Huth and Mattfeld: Myopic and Anticipated Planning in Stochastic Swap Container Management 

IJOR Vol. 8, No. 1, 322 (2011) 

                    (4) 

 

The decision concerning flows from node i to node j is represented by the variable    . The objective is to minimize 

the overall costs     transporting all the goods from node i to node j (1). Constraints (2) and (3) assure the satisfaction 

of the demand    of node j by flows from supply nodes   with a supply of   . The flows must be non-negative (4). MP 

and the RAR applying in AP required a one-period transportation model similar to TP. Two adaptations are made: 

1. The supply exceeds the demand of empty swap containers. Therefore an artificial node has to be introduced 

taking up all the unnecessary empties. 

2. Swap containers are not divisible. So the decision variable     is restricted to integer values. 

Powerful solution methods are available for this kind of static transportation problem. We confine to the 

implementation provided in CPLEX 11.0 in order to solve this problem. 

 

2.2 Multi-stage Transportation Model 

The consideration of dynamics in the transportation model requires three major adaptations. First, a third index t for 

the time dimension is introduced to the decision variable leading to the notation    
 . Second, the demand becomes an 

auxiliary variable allowing for updates of the number of empties residing at a node at a certain point in time. The 

respective empties are stored at this node with no charge for this period and show up again in the next period. Third, 

a dynamic balancing constraint ensures that empties are either stored or allocated in the next period. The notation of 

the dynamic transportation problem is adapted to the new features as depicted in Figure 7. 

 

 

Figure 7. The notation of the dynamic transportation problem 

The initial configuration of the network is given in state  ̅ 
 . The routing of the TR reduces the swap containers in 

node i by the number of pickups   
  and increases the number of swap containers by the deliveries   

 . This leads to 

the initial state for the allocation decision   
 . The state  ̅ 

  before the next routing takes place depends on the 

allocations    
  and    

  performed from node i to j and to node j from i. Its balance is due to the number of empties 

  
  demanded in the next period. Note that   

  is determined by the pickups   
  of the forthcoming periods. Model 

DTP considers these dependencies. 

 

(         )   ∑∑∑      
 

         

  (5) 

Subject to:  

 ̅ 
     ∑   

 

   

              (6) 

  
  ∑   

 

   

                     (7) 

  
    

                              (8) 

  
   ̅ 

     
                           (9) 

 

The objectives are cost minimal flows satisfying the demand occurring at some nodes from the possible supply at 

other nodes over time. Balancing constraints determine the outgoing and incoming flows of nodes. In more detail, 

Constraints (6) ensure that all incoming flows    
  are equal to the number of empties in the next period  ̅ 

   . 

Constraints (7) ensure that all empties   
  leave node i. A flow   

  with i = j represents a storage of a swap container 
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from period t to t + 1. The supply of all nodes must exceed the demand (8) and the integer requirements are provided 

by (9). 

Tailored methods have been developed for dynamic transportation models (Ford and Fulkerson, 1958; Ford and 

Fulkerson 1962; Bellmore et al., 1969; Assad, 1987; Aronson, 1989; Ahuja et al., 1993). Since SSCP instances of 

reasonable size can be solved with CPLEX, we confine ourselves to standard software. 

 

2.3 Dynamic Stochastic Transportation Model 

Various methods dealing with uncertain demand in transportation problems have been developed (Wets, 1982; 

Ermoliev, 1983; Birge and Wets, 1986; Ermoliev, 1988; Powell, 1988; Holmberg, 1995; Powell et al., 1995; 

Frantzeskakis and Powell, 1990; Chong, 1991; Vladimirou, 1991; Cheung and Powell, 1996; Powell, 2007). Among 

others, Stochastic Programming can be applied. According to (Wagner, 1969; Kall and Walace, 1994; Holmberg, 1995) 

we propose a stochastic model with recourse applied on a rolling planning horizon.  

 

2.3.1 Representation 

In principle, the notation of the dynamic stochastic model corresponds to Model DTP. However, the demand   
  

becomes stochastic because of uncertain TR. The uncertainty in period   influences the demand of empties   
  and the 

respective number of empties available in the future. In detail, the unknown number of pickups determines the 

quantity of empties before routing  ̅ 
  and the uncertain pickups and deliveries determine the inventory of empties 

before allocation   
 . The notation is summarized in Figure 8. 

 

 
Figure 8. The notation of the dynamic stochastic transportation problem 

 

 The key-feature of this model is the concept of scenario trees. Assuming two realizations s = 1 and s = 2 in every 

period   of the stochastic variable i lead to the example of the scenario tree in Figure 9. The stochastic demand i is 

represented by the deterministic values    
  whereas the probability    

  of the appearance of    
  is given by ∑    

     

          .  

 

 

Figure 9. Scenario generation in stochastic programming 
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In period zero, a given initial configuration supplies    
  empties at node i. The demand of the next period t = 1 is 

stochastic and may become    
  with probability    

  or    
  with probability    

 . Depending on the TR observed and 

the decision to be made in this period, again we differentiate between two possible realizations for the next period. 

Now four possible states can be observed for period two. Every directed path between root and leaf represents one 

possible scenario with an overall probability resulting from the multiplied individual probabilities along the edges of 

the path. The size of the scenario tree is determined by the number of periods T and the considered number of 

realizations leading to | |    final states in general and      final states in this example. 

Figure 10 explains the way of successively updating the current system state of the SSCP in accordance to Wagner 

(1969). Note that stochastic variables are represented by Greek letters. Consider the determination of a first solution 

given in the bottom row of Figure 10. The supply   
  is given and the demand   

  can have several realizations. Because 

a solution of the dynamic stochastic transportation problem is determined for all periods, the supply and demand of 

Period 2 and Period 3 become stochastic variables (  
 ,   

  and   
 ,   

 ) as well. After implementing the solution    
  

determined in Period 1, the system state is updated according to the observed demand of empties. In this way, a 

deterministic supply   
  is considered for the next stage. 

 

 
 

Figure 10. Multi-stage stochastic modeling with successive system state updates 

 

2.3.2 Model 

In the anticipating concept AP, we differentiate between anticipated allocation requests (AAR) and repair allocation 

requests (RAR), c.f. Figure 6. In the stochastic model, AAR is just an estimate of the overall allocation requests to be 

performed. Overemphasizing the anticipation will lead to a small number of necessary RAR only, but may generate 

superfluous AAR at the same time. Vice versa, a relatively smaller number of AAR will lead to a larger number of RAR 

as repair action with hindsight.  The flows induced by RAR are referred to as recourse flows      
  from node i to node 

j with observed realization s in period t. 

In practice, the balance of AAR against RAR should be subject to transport tariffs for both kinds of allocation 

requests. However, the actual costs with respect to routing are not known in advance. In the best case, a request can be 

entrained on a trailer truck without any extra costs. In the worst case, an additional tour with an empty container as the 

only load has to be carried out. For sure, there is a tendency of smaller transportation costs for AAR compared to RAR. 

Since AAR are routed integrated with TR, the number of synergies due to entrainment will be larger than the much 

smaller number of RAR to be carried out. In order to assess the impact of potential transport tariffs, a recourse factor 

  is introduced to the objective function in order to balance AAR against RAR in the stochastic and dynamic 

transportation model with recourse.  

 

(          )   ∑∑∑      
 

         

 ∑∑∑∑        
    

 

            

 

 (10) 

Subject to:  

 ̅  
     ∑(   

      
 )

   

                   (11) 

   
  ∑(   

      
 )

   

                       (12) 
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                                               (13) 

   
     

      
                                         (14) 

 

Consequently, model DSTP features a second term in the objective function (10) to represent deferred flows      
  

and weights them with recourse factor   and the probability    
 . The balancing and quantity constraints (11), (12) and 

(13) correspond to Model DTP and the new decision variables      
  are restricted to integer values (14). 

 

3. ROUTING OF FULL AND EMPTY RESOURCES  

A General Pickup and Delivery Problem (GPDP) serves as the routing model used in order to dispatch full as well 

as empty swap containers. See Parragh et al. (2008a) and Parragh et al. (2008b) for a recent review on pickup and 

delivery models. Because of a) multiple pickups and/or deliveries per node, b) identical coordinates of request 

locations, and c) depot locations with multiple trucks per depot, we adapt the model of  Savelsbergh and Sol (1995) to 

the needs of the SSCP.  

The GPDP is defined on a graph containing nodes   and edges  . Hubs are defined as nodes in  . A 

transportation request       features an origin hub and a destination hub, which are referred to as pickup and 

delivery nodes (    
     

 ). The set of pickup and delivery nodes is determined by the pickup and delivery nodes of all 

requests     ⋃    
 

      and     ⋃    
 

     .         and      The trucks     have an origin depot 

   and a destination depot    with     *  |   + and     *  |   +.         and    . 

The readability of the model is improved by a multi-digraph representation for the set of edges. To this end, the set 

of all feasible edges    is considered. A truck k can travel the set of edges coming from node   ( (   )) and going 

into node   ( (   )). These sets described in detail in Huth (2009) strengthen the model by avoiding big-M notations. 

The capacity required for a swap container equals one unit. A pickup decreases the truck capacity by one and visiting 

a delivery node increases the available capacity. So         
                 . The sequence decision 

variable    
  holds if truck   travels from node   to node  . The assignment decision variable    

  holds if request    is 

assigned to truck  . The model is formulated as follows. 

 

(          )   ∑ ∑ ∑   
    

             

  (15) 

Subject to:  

∑   
 

   

               (16) 

∑     
            

   (    )

      (17) 

∑     
 

   (    )

                   (18) 

∑       
  ∑       

     
 

   (   
   )   (   

   )

                       (19) 

∑       
  ∑       

     
 

   (   
   )   (   

   )

                        (20) 

                                                   (21) 

          (     
 )( ̂     )         (   )     (22) 

                   (23) 

                                                                  (24) 

     ̂                                                             (25) 

(     )   
       

                                               (26) 

                                                             (27) 

   
  *   +                                                            (28) 

   
  *   +                                                          (29) 

 

The objective function minimizes the total traveled distance (15) that is independent of the load utilization of the 

truck. A transportation move with two swap containers is as costly as the transportation of two swap containers. A 

request    is assigned to exactly one truck k (16) whose route starts and ends with the associated origin and destination 
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depots (17, 18). Furthermore, (19, 20) bind the two decision variables so that a truck k leaves or enters a node only if 

a request exists (   
  holds). The time constraints (21) to (25) lead to a feasible temporal structure of a route and the 

load constraints (26, 27) ensure a feasible utilization of the trucks. All decision variables are binary (28, 29). 

The GPDP is a complex optimization problem for which powerful metaheuristics has been developed. We follow 

recent literature and implement Large Neighborhood Search (LNS) proposed by Ropke and Pisinger (2006). This is a 

Simulated Annealing based neighborhood search heuristic with varying removal and insertion strategies to improve 

existing solutions, i.e. routing plans. Some adaptations to the needs of the SSCP make the LNS a reasonable solution 

method for the GPDP. The predecessor-successor pair insertion algorithm of Nanry and Barnes (2000) yields initial 

solutions. Moreover, promising parameters are evaluated and proposed for GPDP, e.g. for the Shaw removal operator 

and the Regret-  insertion heuristic. We apply these settings and refer to Ropke and Pisinger (2006) and Huth and 

Mattfeld (2009) for details. 

 

4. STRATEGIES 

The purpose of this section is to provide strategies derived from the concepts developed in Section 1.3. To this end, 

different transportation models are combined to four strategies as summarized in Table 1. In the computational 

investigation the performance of the strategies will provide answers whether anticipation is worth the effort spent in 

the case of the SSCP. In the sequel of this section a detailed, pseudo-code oriented outline of the defined strategies is 

given. 

 

Table 1. Conceptual models, derived strategies and its underlying transportation problems 

Concept Strategy Anticipated allocation Repair allocation 

MP   - TP 

AP deterministic DTP - 

AP expected DTP TP 

AP stochastic DSTP TP 

 

4.1 MP 

This strategy does not use anticipation, thus any anticipating strategy should clearly outperform MP. In MP all 

stochastic information about future system states is neglected. This leads to the straightforward implementation 

shown in Algorithm 1. Line 1 sets the initial configuration of the network: First, the demand of empties for the TR of 

the first period is calculated; secondly model TP generates the required AR accordingly. Third, AR are routed using 

GPDP, so that the swap containers (SC) are distributed in a way which avoids a shortage of empties already in the first 

period. This initial configuration is in line with all other planning approaches.  

 

Algorithm 1 MP 

1: Set initial configuration          

2: for all period do  

3: Input TR to GPDP and generate routes         

4: Update SC demand according to routes         

5: Input SC demand to TP and generate AR        

6: Input AR to GPDP and generate routes      

7:  Update SC distribution according to routes 

8: end for   

 

For each period, the following steps apply (Lines 2 to 8). After computing initial routes using the 

predecessor-successor pair insertion algorithm, LNS determines the best obtainable routes subject to model GPDP. 

The dispatching of routes is simulated by updating the swap container demand for the next period (Lines 3 and 4).  

Model TP is solved with CPLEX in Line 5 and generates AR considering the current system state. Note that at this 

point in time the demand of the next period is known and the TR of the next period enter model TP. This results in 

flows of empty swap containers that are transformed into AR. The remainder of the algorithm routes AR similar to the 

routing of TR (Lines 6 and 7).  
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4.2 AP-deterministic 

In AP-deterministic, stochastic variables are assumed to be known with certainty. This assumption is made to 

compare the stochastic approaches with its deterministic counterpart. Literature refers to such a benchmark as 

competitive analysis (Krumke, 2001; Jaillet and Wagner, 2004; Jaillet and Wagner, 2006; Angelelli et al., 2007; Jaillet and 

Wagner, 2008).  For this strategy the dynamic transportation problem (DTP) is used (c.f. Section 2.2). Since the 

demand is known, no repair actions with respect to RAR are needed. This strategy can make use of perfect information 

and therefore poses a lower bound on the overall distance of routes. 

In Line 2 of Algorithm 2 the dynamic transportation model is solved with deterministic known demand of empties. 

The solution of the DTP contains flows of empties for the entire planning horizon considered. Within the for-loop 

(Lines 3 to 6), the AAR are successively fetched from this solution in order to build the set of requests from the known 

TR and the AAR of the respective period. Afterwards, the integrated routing of TR and AAR is implemented by LNS 

(Line 4) and the position of the swap containers are updated according to the results obtained (Line 5). 

 

Algorithm 2 AP-deterministic 

1: Set initial configuration 

2: Input demand to DTP and generate AAR         

3: for all period do  

4: Input TR and respective AAR to GPDP and generate routes      

5: Update SC demand according to routes         

6: end for   

 

4.3 AP-expected 

AP-expected uses expected values of the probability distribution of demanded empties. Hence the DTP can be used 

without modification. Because anticipation by DTP may fail, required empties have to be balanced at short notice as 

RAR. For the determination of RAR a one-period transportation problem is solved when the demand of the current 

period becomes known with certainty. Since in update of information occurs in every period, DTP is executed on a 

per-period basis. AP-expected applies non-stochastic models to a stochastic problem. It should be outperformed by a 

model that considers stochastics explicitly. However, under the assumption that anticipation is beneficial, it should do 

better than MP.  

 

Algorithm 3 AP-expected 

1: Set initial configuration         

2: for all period do  

3: Input demand to DTP and generate AAR      

4: Input TR and AAR to GPDP and generate routes 

5: Update SC demand according to routes 

6: Input demand to TP and generate RAR 

7: Input RAR to GPDP and generate routes 

8: Update SC distribution according to routes      

9: end for   

 

Algorithm 3 shows the steps to perform. The observed demand realization may need some additional allocations. 

Hence the determination of AR has to apply twice and in each period (Lines 2 to 9): Anticipation by performing model 

DTP for the rest of the periods (Line 3) and repairing of this solution by model TP (Line 6). According to the 

temporarily distribution of the considered requests, routing of TR, AAR and RAR by LNS has to be applied twice as 

well (Lines 4, 5 and 7, 8). 

 

4.4 AP-stochastic 

AP-stochastic anticipates possible future demand realizations derived from a probability distribution. Therefore the 

allocation problem is formulated as a Dynamic Stochastic Transportation Model (DSTP), (c.f. Section 2.3). This strategy 

considers stochastics explicitly and is supposed to produce superior solutions.  
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Algorithm 4 AP-stochastic 

1: Set initial configuration         

2: for all period do  

3: Input demand to DSTP and generate AAR      

4: Input TR and AR to GPDP and generate routes 

5: Update SC demand according to routes 

6: Input demand to TP and generate RAR 

7: Input RAR to GPDP and generate routes 

8: Update SC distribution according to routes      

9: end for   

 

In AP-stochastic, the dynamic transportation model with recourse (as equivalent to a dynamic stochastic 

transportation problem) takes into account discrete probabilities concerning the realization of demand of empties. 

This is implemented in Algorithm 4 where model DTP is replaced by model DSTP in Line 3. This way, the repair 

action is anticipated by considering the cost of RAR in the transportation problem. Besides, Algorithm 4 is identical to 

Algorithm 3. 

 

5. COMPUTATIONAL STUDY 

The computational study is performed in order to assess the effectiveness of the above defined strategies. We are 

going to clarify whether the consideration of dynamic and stochastic models is worthwhile the effort spent in the face 

of the options and restrictions routing obeys to. Statements are to be derived for varying application scenarios. 

Simultaneously efficiency is considered in terms of computation times.  

In the following, application scenarios are defined by generating hub networks and request distributions for those 

networks. Next, a reasonable setting of parameters for the AP-stochastic strategy is determined. Finally, the four 

strategies defined are compared with respect to the results yield for the applications scenarios under consideration.   

 

5.1 Design of application scenarios 

We vary the geographical structure of the network by considering different distributions of hub locations. Solomons 

VRP-benchmark instances introduced for vehicle routing problems with time windows are adopted to the 

requirements of the SSCP (Solomon, 1987). Each network consists of 25 nodes that are distributed randomly (instance 

R101), clustered (instance C101), and randomly clustered (instance RC101).  

Transport requests are defined by pickup and delivery hubs. Heterogeneously distributed pickup and delivery hubs 

can model regions of different economic viability. Regions of different economic prosperity lead to unbalanced flows 

of goods and eventually to an unbalanced number of empties at hubs. A request structure may be one of the following: 

 Uniform distribution (uniform): Pickup and delivery locations of requests are uniformly distributed over the 

network. Only few imbalances are expected and allocations are easy to deal with. 

 Normal distribution (normal): Some hubs are characterized by a large number of pickups whereas other hubs 

show a larger number of deliveries. This can be found e.g. in networks with decentralized distribution centers. 

Obviously this leads to an imbalance of empties in the course of time. However, a demand of swap 

containers at hubs characterized by many pickups may be satisfied from adjacent hubs with predominant 

delivery activity. 

 Normal distribution with clustered pickups and deliveries (clustered): Pickup and delivery locations of normal 

distributed requests are clustered in geographical different regions of the network. The farthest north-west 

hub features the most pickups. The number of pickups at hubs decreases in south-east direction. 

Analogously, the farthest south-east hub features most deliveries in the network. This scenario may stand 

proxy for distant container seaports and hinterland cities, where local balancing of swap containers is not an 

option. 

Unbalanced swap container fleets as induced by normal and clustered distributed request structures are rather norm 

than exception from a practical point of view. Thus, conclusions drawn from these experiments are considered more 

important. 

Crainic et al. (1993) and Choong et al. (2003) discuss the relevance of choosing the appropriate number of periods 

to consider for dynamic problems. They state that 10 to 15 periods are necessary to warrant an adequate settling time 

for the system and to eliminate end of horizon effects. We consider 20 periods with an initial inventory of three swap 
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containers per hub. We consider one, two or three transportation requests with an identical probability of occurrence 

to be transported between a pickup and a delivery node. 

Since service times and time windows are not considered, the maximum tour length is to be defined in an explicit 

way. We set the maximum tour length to three times the maximum distance between any two hubs in the network. The 

larger the maximum tour length of a vehicle is set, the fewer vehicles are needed. More or less independent subtours 

are combined by repositioning moves of vehicles. 

The LNS is implemented in Java 1.6 and the transportation models in CLPEX 11.0. LNS carries out a fixed number 

of 250 neighborhood moves regardless of the neighborhood size and improvement. The experiments are performed 

on a 3 GHz Intel PC with 1 GB RAM running Windows Vista. 

 

5.2 Analysis of AP-stochastic 

In order to incorporate DSTP into strategy AP-stochastic two parameters have to be set. We derive reasonable 

settings by means of experiments and discuss impacts on the different modes of swap container transports performed.  

1. Planning Horizon: Psaraftis (1988) and Psaraftis (1995) propose that events in the near future shall receive 

more attention than events in the distant future. Following this line of argumentation, we limit the planning 

horizon to at most 5 periods. Anticipating a smaller time horizon decreases the exponent in the number of 

possible final states | |   . This way the decision tree can be shrunken dramatically.    

2. Recourse factor  : An increasing recourse factor   favors the anticipation of allocations whereas a decreasing   

leads to a potential larger number of repair action allocations to be performed. In the following   is varied 

between 0.0 assuming that RAR are performed without costs and 2.0 assuming that RAR are performed at 

twice the costs of AAR.   

Table 2 summarizes the parameters used in the experiment. Network structure, distribution, planning horizon and 

recourse factor are varied and for every variation ten independent problem instances are generated. In order to 

investigate the impact of the recourse factor and the planning horizon on the overall distances driven by truck, 

averages obtained from the ten instances of each variation of parameters are considered. 

 

Table 2. Experiment to determine recourse factor and planning horizon for DSTP 

Parameter Characteristic Count 

Network R101; C101; RC101 3 

Distribution uniform; normal; clustered 3 

Planning horizon ph 1; 2; 3; 4; 5 5 

Recourse factor R 0.0; 0.2; … ; 2.0 11 

Strategy AP-stochastic 1 

Instances   10 

Number of runs   4,950 

 

 

 

 

5.2.1 Planning horizon and recourse factor 

In order to derive a generally applicable setting for the two parameters, a further aggregation over the three 

application scenarios is done. Therefore Figure 11 shows aggregates over 30 problem instances, i.e. ten instances for 

each of the three application scenarios.  

Unfortunately, different magnitudes of distances are obtained for the problem instances of the proposed application 

scenarios. Therefore a normalization of distances between zero and one is performed as follows: Mean values (dmean) 

for 30 instances are calculated. Then, the minimum and maximum values (dmin, dmax) are calculated leading to dnorm = 

(dmean – dmin) / (dmax – dmin). Smaller values represent smaller overall distances obtained by AP-stochastic. 

The Planning Horizon determines the number of anticipated periods varied between one and five periods. 

Obviously, an anticipation of multiple periods ahead does not lead to significantly better results. Indeed, Figure 11 

advices to choose a planning horizon of two periods because of the shortest normalized distance observed.  

The recourse factor controls the tendency of performing allocation requests. If a planning horizon of just one 

period is considered, the value of the recourse factor is irrelevant. This is depicted in the topmost curve of Figure 11. 

For all other settings of the planning horizon considered, R > 1 favors anticipated allocations yielding smaller overall 

distances. For R > 1.2, distances slightly increase again because of allocations anticipated mistakenly. Hence, we 

choose a recourse factor of 1.2 for the following experiments. 
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Figure 11. Analysis of variation of recourse factor and planning horizon 

 

5.2.2 Analysis of transports 

In the following, the structure of the itineraries of trucks is investigated for the three application scenarios 

independently. For this purpose, we differentiate possible types of truck utilization. Table 3 summarizes the variety of 

how a truck can travel an edge. 

 

Table 3. Utilization of trucks and definition of the types of legs 

Slot of truck Slot of trailer Types of leg 

TR TR 
Transport 

TR - 

AAR AAR 
Anticipated allocation 

AAR - 

RAR RAR 
Repair allocation 

RAR - 

- - Repositioning 

TR AAR Entrainment 

 

A swap container can be transported on the truck as well as on the trailer. Depending on the type of request, the 

swap container is utilized by TR, AAR and RAR. Whenever only TR are involved, we call such legs transports. Other 

types of legs are referred to for genuine allocation moves. If an RAR as a result of repair action is performed, this leg 

is called repair allocation; else an anticipated allocation is carried out. If the truck moves without swap containers, a so 

called repositioning move takes place. This includes moves from the depot to the first pickup node, moves from the 

final delivery node to the depot and moves from the delivery node of the last container to a further pickup node. 

Whenever TR and AAR are considered jointly, an entrainment of empties is carried out.  

Figure 12 depicts the absolute mean distances observed for the ten problem instances of an application scenario 

with respect to different types of legs (c.f. Table 3). A planning horizon of 2 periods is used, the recourse factor is 

varied between 0.0 and 2.0 in steps of 0.2. For all application scenarios we observe a structural change of legs between 

0.8  R  1.4 such that AAR increase and RAR decrease. The reason is that RAR become costlier and the model tends 

to pre-draw swap container allocations whenever possible. These allocations show up as AAR in the integrated routing 

plans. However, the most improbable demands are still deferred to later periods. A minor effect is the slight increase of 

entrainments with increasing R which is due to the fact that only AAR can be entrained by routing.  
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Figure 12. Structure of routes for AP-stochastic, a planning horizon of two periods and varying recourse factors 

(a) Uniform distribution (b) Normal distribution (c) Clustered distribution 

 

A major effect can be observed with regard to repositioning legs. The distance driven without load tends to decrease 

whenever the routing model can exploit synergies of integration resulting in two swap containers per truck and 

traveled edge.  With an increasing   more AAR are generated, which can a) be planned in a multi-period way and b) 

benefit from integrated routing. AAR replace RAR which typically cause costly repositioning moves. These 

observations hold for all application scenarios considered, the effects however become more explicit with an 

increasing imbalance imposed by the problem instance. 

 

 

(c) 

(b) 

(a) 
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5.2.3 Analysis of runtimes 

The runtimes of AP-stochastic heavily depend on the recourse factor and the planning horizon. Because the 

planning horizon has a direct impact on the size of the scenario tree within model DSTP, CPLEX runtimes increase 

strongly with an increasing planning horizon. The second driver of the size of the scenario tree is the number of 

realizations, which is fixed to three in the experiments. The mean runtimes observed are depicted in Table 4. The 

fraction of the runtime used by CPLEX (DSTP) is given in brackets. Generally, a planning horizon of up to three 

periods does not result in a notable runtime of CPLEX due to a relatively small scenario tree leading to a small model 

size. The last two rows of Table 4 depict the number of constraints and variables of the transportation model DSTP. 

The model size growths rapidly with the number of periods of anticipation considered.  

 

Table 4. Average runtimes over all network structures, request distributions and independent runs in seconds 

(CPLEX) 

Recourse factor R Planning horizon 

  1 2 3 4 5 

0.0 10 (0) 12 (0) 20 (0) 58 (40) 166 (146) 

0.2 10 (0) 12 (0) 20 (0) 47 (28) 159 (138) 

0.4 10 (0) 13 (0) 20 (0) 48 (28) 161 (140) 

0.6 10 (0) 13 (0) 21 (0) 47 (29) 169 (148) 

0.8 10 (0) 13 (0) 19 (0) 49 (30) 175 (155) 

1.0 10 (0) 28 (0) 44 (0) 76 (31) 200 (155) 

1.2 10 (0) 48 (0) 64 (0) 96 (31) 220 (161) 

1.4 10 (0) 53 (0) 69 (0) 100 (31) 228 (159) 

1.6 11 (0) 54 (0) 72 (0) 101 (31) 238 (167) 

1.8 11 (0) 58 (0) 74 (0) 104 (31) 240 (163) 

2.0 11 (0) 60 (0) 74 (0) 105 (31) 242 (167) 

Constraints - 160 550 1,700 9,700 

Variables - 1,480 5,350 15,500 84,800 

 

The impact of the recourse factor on the runtime depends on the tendency of deferring allocations to future periods. 

With increasing  , RAR are replaced by AAR to be routed together with TR in GPDP. Although LNS performs a 

fixed number of 250 exchange moves in every case, with increasing   the metaheuristic evaluates a more complex 

neighborhood that is more time consuming. We can conclude that anticipation by means of AP-stochastic works in 

general, but has to be paid by some extra computational effort.  

 

5.3 Comparison of strategies 

We expect that more efficient solutions can be obtained by anticipated planning in comparison to myopic planning.  

We have already seen that in AP-stochastic repositioning moves can be largely avoided. To some extent, synergies in 

routing can be exploited by the detouring and entrainment feature. In the following, we compare the results gained for 

AP-stochastic with MP, AP-deterministic and AP-expected. The experiment is performed as shown in Table 5.  

 

Table 5. Experiment to compare myopic and anticipating planning approaches 

Parameter Characteristic Count 

Network R101; C101; RC101 3 

Distribution uniform; normal; clustered 3 

Strategies 
MP; AP-deterministic; AP-expected; 

AP-stochastic 4 

Instances   10 

Number of runs   360 

 

Its results observed are depicted in Table 6 for the four strategies in accordance to the application scenarios 

considered and the types of legs performed. The mean distance of the itinerary and the improvement against MP is 

given for the anticipating strategies. This experiment allows us to answer the three questions raised at the end of 

Section 1.3. 
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Table 6. Comparison of myopic and anticipating planning approaches for the SSCP 

Types of leg MP AP-deterministic AP-expected AP-stochastic 

Uniform distribution 

Transport 5,927 5,813 5,807 5,800 

Repositioning 2,386 2,358 2,389 2,355 

Entrainment 0 144 156 201 

Anticipated alloc. 0 397 413 594 

Repair allocation 516 0 199 19 

Sum 8,829 8,712 8,964 8,969 

Improvement   1.3% -1.5% -1.6% 

Normal distribution 

Transport 5,523 5,352 5,336 5,226 

Repositioning 3,090 2,099 2,162 2,044 

Entrainment 0 268 286 344 

Anticipated alloc. 0 1,946 2,352 2,193 

Repair allocation 2,773 0 360 49 

Sum 11,386 9,665 10,496 9,863 

Improvement   15.1% 7.8% 14.4% 

Clustered distribution 

Transport 9,291 9,202 9,294 9,190 

Repositioning 8,502 3,717 3,485 3,534 

Entrainment 0 101 80 134 

Anticipated alloc. 0 5,610 7,369 6,859 

Repair allocation 8,023 0 475 117 

Sum 25,816 18,630 20,703 19,834 

Improvement   27.8% 19.8% 23.2% 

Overall 

Sum 56,815 46,706 50,248 48,289 

Improvement   17.8% 11.6% 15.0% 

 

5.3.1 Anticipation is advantageous 

By comparing anticipating with non-anticipating solution approaches, we can state that anticipation is worth the 

effort.  In general, anticipating approaches perform superior if the request distribution produces an imbalanced swap 

container fleet. The consideration of future demand situations and the integration of TR and AR result in benefits for 

the overall problem. As expected, the ex-post approach AP-deterministic outperforms all other approaches due to 

complete knowledge of future data. This serves as benchmark for the possible impact of anticipation. When 

considering stochastics, AP-stochastic performs almost as good as AP-deterministic whereas AP-expected does 

produce improvements over MP only. Altogether, the ranking can be stated as follows: AP-deterministic   

AP-stochastic   AP-expected   MP. 

 

5.3.2 Consideration of stochastics is beneficial 

Stochastics may be incorporated in different ways; AP-stochastic is the most elaborate one. Is this complex 

approach worthwhile the effort spent? 

As summarized in the last two rows of Table 6, the ex-post approach AP-deterministic with known realizations is 

not as dominant as may have been expected. Despite perfect information, AP-deterministic outperforms 

AP-stochastic by just a few percent. Although AP-stochastic may produce imperfect allocations, the subsequent 

routing model is capable of adopting the allocation solution which may be implemented for free or comparatively low 

priced. This observation is also shown at the bottom of the recourse factor analysis. Some additional AAR (higher 

value for  ) does not necessarily lead to inefficient itineraries. On the contrary, RAR can be saved that are carried 

mostly on a direct way between supply and demand hub and a repositioning on the way back.  
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5.3.3 Advantages are confined to non-uniform distributions 

The second question concerns different settings of request distribution. Results show, there is no solution approach 

that can be successfully applied to all settings.  

Planning with uniform distributed requests does not induce many AR because of uniformly distributed empties. That 

is depicted in the allocation rows of Table 6. The MP approach shows a distance of 515 whereas allocations in AP 

approaches are between 397 and 612 units. Concerning only the allocations, anticipation is not beneficial with uniform 

distributed requests because of the minor potential of integration. In fact the variation against MP shows rather a 

deterioration of performance than an improvement. 

For normal distributed instances, the variation against MP is convincing for all anticipating approaches. If expected 

values are used, the AA and RA exceed the corresponding legs of the other approaches. It seems that AP-expected 

overestimates the demand (AP-expected: 2.352; AP-deterministic: 1.946; AP-stochastic: 2.193) and moreover does not 

anticipate necessary allocations (AP-expected: 360; AP-deterministic: 0; AP-stochastic: 49). The more precise recourse 

model in AP-stochastic and the demand considered known in AP-deterministic outperforms the deterministic model 

with expected values because of these two types of legs. Other legs feature nearly the same distance. 

Unlike this, clustered distributed instances show a lot of allocations to be made and consequentially longer overall 

distances. Here another interesting effect can be observed. Because of geographical separated regions, AAR are paired 

on their direct way from supply to demand hubs. Thus just a very few entrainments take place. However, the joint 

consideration of TR and AAR allows decreasing the number of repositioning moves. On one hand, full swap 

containers are transported from pickup to delivery hubs and on the other hand empties are balanced on the same way 

back. No extra repositioning moves need to be implemented. 

 

5.3.4 Analysis of runtimes 

The runtime of CPLEX does play a minor role only, because of the planning horizon of only two periods. Thus, the 

mean runtimes in Table 7 represent the effort of LNS that depends on the size of the considered request sets. MP does 

not integrate the routing decision, so both types of requests are routed separately whereby routes for a few RAR are 

calculated very fast. Longer runtimes of AP-stochastic are caused by the time to build the model and calling CPLEX 

from Java; the deterministic models in AP-deterministic and AP-expected consume less time (c.f. column uniform in 

Table 7). Normal distributed instances result in many AAR and so in longer runtimes of LNS. However, for normal 

distributed instances with clustered pickups and deliveries the mean runtimes decrease significantly. AAR produced in 

these instances are difficult to adopt from the routing model by pairing them with TR because of the spatial 

segmentation. LNS can barely improve the solution of the transportation model that leads to a fast convergence of the 

metaheuristic. 

 

Table 7. Average runtimes of the approaches in seconds 

Strategy Uniform Normal Clustered 

MP 15 14 12 

AP-deterministic 31 75 26 

AP-expected 30 85 25 

AP-stochastic 55 93 25 

 

6. CONCLUSION 

The introduced Stochastic Swap Container Problem is a complex logistic problem and addresses tactical and 

operational issues in parcel transportation networks. Methods of solving this twofold problem in a myopic and 

anticipated way are proposed. The myopic solution approach performs inferior because of neglecting future 

allocations and missing integration effects. Anticipation is introduced in two ways on the tactical level (transportation 

model): We use 1) expected values and 2) probabilities in order to describe the demand of empty swap containers in 

future periods. As expected, the recourse model with more detailed information about stochastics outperforms the 

expected value transportation model. Primarily, the appropriate parameterization of the integration approach by 

adjusting the recourse factor of the transportation model makes a contribution to the good results by enabling an 

appropriate integration of TR and AR. Additionally, it could be shown that a dynamic stochastic transportation model 

does not benefit from anticipating events in the remote future.  
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Further attention may be put on more sophisticated methods of solving the models in order to transfer our findings 

on real world problems. Moreover, the principle integration ideas in a stochastic environment may be beneficial in 

similar problems like railway operations. 
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