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Abstract Ramp metering has been recognized as one of viable strategies of freeway traffic management, which may 

improve travel speed as well as reduce delay. In this study, a dynamic model is developed to optimize metering rates of a series 

of on-ramps which maximize the total throughput subject to vehicle density, roadway capacity, and queue length constraints 

with simultaneous perturbation stochastic approximation (SPSA). A calibrated microscopic traffic simulation model is used to 

evaluate the performance of the developed model. Results show that the total throughput of the studied freeway can be 

increased without increasing the total delay after implementing optimal metering rates. The developed SPSA has demonstrated 

itself as an efficient algorithm to search for the optimal solution of a dynamic, multivariate, and non-linear problem.   

Keywords Ramp metering, traffic management, freeway, delay, optimization, simulation 

 

 

1. INTRODUCTION 

Ramp metering has been recognized as one of viable strategies of relieving freeway congestion, which may improve travel 

speed as well as reduce delay by regulating flow entering the mainline via the ramps. While ramp metering systems have been 

applied in several U.S. cities (Piotrowicz and Robinson, 1995), more concerns have been focused on evaluating its 

effectiveness (Kotsialos and Papageorgiou, 2001; Hourdakis and Michalopoulos, 2002; Chu et al., 2004; Zhang and Levinson, 

2005). 

In this study, a dynamic model is developed to optimize metering rates of a series of on-ramps which maximize the total 

throughput with simultaneous perturbation stochastic approximation (SPSA). One of the major criticisms of ramp metering 

has been the delay caused on the ramps because of the queues created by reduced ramp capacity. Therefore, constraints (e.g., 

meter locations, ramp storage capacities, lower and upper bounds of ramp metering rates) are considered.  

Based on collected geometric and traffic data, a microscopic traffic simulation model which contains a 15-mile long freeway 

segment on Interstate I-80 in New Jersey is developed with a microscopic corridor traffic simulation program, called CORSIM, 

developed by the Federal Highway Administration. With that various ramp control scenarios can be evaluated, while the 

performance and benefit of metering control can be quantified.  

 

2. LITERATURE REVIEW 

A variety of models have been developed before for optimizing metering rates of freeway ramps. Papageorgiou and 

Kotsialos (2002) provided an overview on different ramp metering algorithms. Without considering the dynamic nature of 

traffic, pre-timed linear programming (LP) models were developed to search for metering rates to achieve the optimum 

objectives [e.g., minimize total travel time (Wattleworth, 1967) and maximize throughput (Chen et al., 1974)]. Such models 

aimed at sending vehicles onto the freeway subject to the available capacity on the mainline. The advantage of the LP models 

is the implementation simplicity (Masher et al., 1976), but unable to efficiently adapt to dynamic traffic conditions 

(Papageorgiou, 1980).  
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To capture dynamic traffic condition, local traffic responsive models were developed. With real-time traffic information 

(e.g., flow, speed, and density), the ramp metering rates can be optimized. In those models, gap-acceptance concept was 

introduced to break up a platoon of vehicles on the mainline into individual vehicles or a number of smaller groups. Thus, the 

entering vehicles from on-ramps can smoothly merge into the mainline stream. Because of reduced traffic interruption, the 

travel speed may be improved. The optimal metering rates were determined based on queue length, wait time and pre-specified 

critical gap of each on-ramp (Drew, 1967; Wiener et al., 1970). As a local occupancy-based metering control algorithm, 

ALINEA (Papageorgiou et al., 1991; Hadj-Salem and Papageorgiou, 1995) was developed on the basis of classical feedback 

control principles and attempted to maximize the throughput via maintaining a desired occupancy downstream of the mainline. 

The metering rates of controlled ramps were dynamically adjusted but treated as isolated rather than connected ones. 

Therefore, the interdependency of congestion at ramp junctions as well as the demand change caused by delay at metered 

ramps was unable to consider. Papamichail et al. (2010) proposed a nonlinear model-predictive hierarchical (three-layer) 

control approach for coordinated ramp metering of freeway networks. The local feedback control strategy ALINEA was used 

in the third layer. 

The system-wide models were developed to handle a series of ramps of a freeway corridor or network, which attempted to 

capture the interdependence of traffic conditions among consecutive ramps. Those models often led to hierarchical non-linear 

optimization programming carried by a centralized computer system to process traffic data, optimize metering rates, and 

execute the control law through ramp meters in real-time. The equivalent traffic demand was often formulated to represent a 

queue on a metered ramp, so that vehicles spillback onto local streets can be prevented. A quadratic programming problem 

was formulated (Yuan and Kreer, 1971) to determine desirable metering rates, considering vehicle conservation, the 

Greenshields’ speed-density, and metering rate constraints. Later, the total travel time was formulated as a quadratic function 

(Stephanedes and Chang, 1993), which was minimized by a conjugate gradient search method. The system-wide ramp metering 

model usually involves in rather complex, nonlinear optimization techniques required considerable computation effort to 

search for the optimal solution. However, the solution of those models might be difficult to implement due to oscillatory 

metering rates, especially when collected traffic data were frequently corrupted with noise or transmission errors. 

Heuristics has been applied in searching for optimal ramp metering rates to adapt to dynamic change in managing traffic on 

freeways. A number of models were developed previously to achieve local optimum for large-scale freeway networks. In a 

decentralized metering control model (Goldstein and Kumar, 1982), a series of on-ramps were divided into overlapping 

groups that were controlled by sub-systems individually to improve efficiency in searching for the optimal solution. An expert 

fuzzy controller model (Chen et al., 1990) was developed to maximize freeway throughput while minimizing delay on local 

streets. The controller can infer to the degree true condition to determine metering rates. Unlike the evolutionary 

programming model (McDonnell, 1995), a fuzzy logic model containing seventeen rules was developed to control entering 

traffic on multiple on-ramps (Taylor et al., 1998), which was found outperforming the local metering model and the bottleneck 

model in terms of lower mainline occupancy and higher throughput (Taylor et al., 2000). 

Papamichail et al. (2010) presented a traffic-responsive feedback control strategy, heuristic ramp-metering coordination 

(HERO) that coordinates local ramp-metering actions in freeway networks. HERO has been implemented at six consecutive 

inbound on-ramps on the Monash Freeway in Melbourne, Australia. Meng and Khoo (2010) proposed a multi-objective 

optimization model incorporating a modified cell-transmission model (MCTM) that captures dynamic traffic flow pattern with 

ramp metering operations. The MCTM then is embedded in the Non-dominated Sorting Genetic Algorithm II (NSGA-II) to 

solve the multi-objective optimization model. 

To deal with a dynamic control problem in a large-scale network, the computation time required to search for the optimal 

solution is critical to react existing and in coming traffic in time. Recently, simultaneous perturbation stochastic approximation 

(SPSA) has dragged attention because of its efficiency and simplicity (Spall, 1998; Ting and Schonfeld, 1998; Kleinman et al., 

1998). The procedure to implement SPSA is fairly simple, which starts with an initial guess, which will be iteratively updated 

until the desired solution is found. SPSA does not rely on direct measurements of the gradient (derivative) of the objective 

function. Instead, it relies on measurements of the objective function, which avoids the difficulties to obtain the relationship 

among parameters and decision variables. ) SPSA has been applied to optimize metering rates of on-ramps individually with 

the satisfied results (Chien et al., 2008). This study aims to dynamically optimize coordinated metering rates, considering the 

joint impact of traffic affected by the controlled ramps.   

 

3. METHODOLOGY 

According to the traffic flow theory, high density of vehicle corresponding to a low speed of flow results in a low volume. 

Therefore, when high traffic demand occurs, vehicles merging to the mainline stream shall be regulated to reduce flow 

interruptions. To formulate the proposed coordinated multi-ramp metering control model, the following assumptions are 

made: 

(a) The flow on the mainline is steady without serious incidents blocking the traffic, which can represent a steady relationship 

among flow, speed and density; 

(b) Each vehicle passes through a meter separately based on a first-come first-released discipline;  and 

(c) The average vehicle length is 20 feet, which is used to approximate the storage capacity of the metered ramps. 
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The objective function developed here is to maximize total throughput subject to constraints of link densities, capacities and 

the boundaries of metering rates. A general N-segment freeway corridor with multiple on-ramps and off-ramps shown in 

Figure 1 can be formulated as Eq. 1 (Chang et al., 1994). Considering time varying traffic entering the corridor, the metering 

control period can be divided into a series of equal intervals. The density equation of link i at interval k denoted as i(k) is 

formulated as 

 

1( ) ( 1) [ ( ) ( ) ( ) ( ) ( )] ,   on off

i i i i i i i i i

i i

T
k k q k R k k Q k q k i

L l
                                                                                              (1) 

 

where i : index of links;  

k : index of time intervals; 

li : number of through lanes on link i; 

Li : length of link i (miles); 

N : number of links in the network; 

qi(k): traffic volume from link i to link i+ 1 at interval k (vph);  

Qi(k): mean flow rate of link i at interval k (vph); 

Ri(k): metering rate of link i at interval k (vph);  

T: duration of a time interval (hours);  

δi
on : binary variable (1 if link i is an on-ramp; otherwise, 0);  

δi
off : binary variable (1 if link i is an off-ramp; otherwise, 0); and 

θi(k): turning percentage of mainline flow from link i to the off-ramp at interval k (%). 
 

 
Figure 1. A general freeway corridor with N segments 

 

Eq. 1 shows that the projected mean density i(k) of link i at interval k is affected by that at interval k - 1 denoted as i(k-1), 

and the entering and exiting volumes from and to the ramps. The transition flow rate denoted as qi(k) can thus be formulated 

as 

 

1 1 1( ) ( )[1 ( )] ( ) [1 ( )][ ( ) ( )],   off on

i i i i i i i i iq k k k Q k k Q k R k i                                                                                               (2) 

 

where i(k) is a weighted factor representing the interaction between flows on links i and i + 1 at interval k. An assumed value 

of 0.5 for i(k) indicates the same influence to flows on links i and i + 1, which may simplify the calculation. Note that N(k) 

is equal to 1 on the last link N. 
Eq. 3, representing density functions for links 1 through N, can be derived by substituting Eq. 2 into Eq. 1. Thus,  

 

-1 -1 -1 -1 -1 1

-1 1 1

( ) ( -1) ( )[1- ( )] ( ) {1- ( ) - ( ) - [1- ( )] ( )} ( ) [ ( ) -1] ( )

           ( ) ( ) [1- ( )] ( ),   

off off

i i i i i i i i i i i i i i

i i i i i i

on on

i i i i i i

i i i i

T T T
k k k k Q k k k k k Q k k Q k

L l L l L l

T T
k R k k R k i

L l L l

          

   



 

   

  

                             (3) 

 

where 0(k)= N(k) =1; Q
0
(k) = q

0
(k); δ

0

o n 

= 0; and θ
0
(k) = 0. The relationship among speed, flow and density can be expressed 

by   

 

( ) ( ) ( ),   i i iQ k k S k i                                                                                                                                      (4) 
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where Si(k), representing the mean speed of link i at interval k, can be collected by loop detectors or other types of road 

sensors.  

Note that the total traffic throughput (TTT) defined here is the total number of vehicles discharged from freeway exit links 

over the control intervals. Thus, it can be formulated as 

 
1

1 1

( ) ( ) ( )
K N

off

i i i N

k i

TTT k Q k Q k T 


 

 
  

 
                                                                                                                                            (5) 

 

where K is the last time interval of the control period. By substituting Eq. 4 into Eq. 5, TTT can be derived as 

 
1

1 1

( ) ( ) ( ) ( ) ( )
K N

off

i i i i N N

k i

TTT T k k S k k S k   


 

 
  

 
                                                                                                    (6) 

 

4. SOLUTION ALGORITHM – SPSA 

Solve a dynamic and large-scale nonlinear optimization problem is challenging, even under the advent of fully deployed 

advanced surveillance systems (e.g., various types of detectors lead to the improvement in data collection and processing) and 

developed optimization methods (e.g., linear-quadratic optimization and hierarchical decomposition algorithms). In real-world 

systems, it is fairly complicated to formulate detailed, explicit relationship between adjustable or controllable system 

parameters and the resulting system performance. In optimizing nonlinear programming problems, the gradient of the 

objective function with respect to the decision variables needs to be derived. The optimal solution can be obtained by setting 

the gradient equal to zero and solving it. However, the gradient might be difficult to derive, depending on the complexity of the 

objective function. 

The SPSA algorithm, a recursive optimization technique for finding local optimizers of linear or nonlinear objective 

functions, was first introduced and developed by Spall (1992). Based on the measurement of the objective function (not on the 

gradient of the objective function), SPSA computes the positively and negatively perturbed objective values in each iteration. It 

is similar to finite difference stochastic approximation (FDSA), only measurements (possibly noisy) of an objective function to 

form gradient estimates and converge to a local optimum are required. However, unlike FDSA, SPSA requires only two 

objective function evaluations per gradient estimate, which is a substantial advantage in solving high-dimensional problems. 

As discussed earlier, the SPSA algorithm uses objective function measurements to iteratively update system control 

parameters until the local optimum is yielded. Specifically, let    R
p
 be a vector whose components represent decision 

variables to be optimized, such as ramp metering rates and mainline traffic flow in this study. Supposing that ( )L  represents 

the objective function, the goal is to find a root 


h  of the gradient ( )g  of ( )L  , where   should be conducted from 

 
( )

( ) 0
L

g






 


                                                                                                                                                                        (7) 

 

Assume that the measurement ( )y   of the objective function can be represented by Eq. 8 for any  . Thus, 

 

( ) ( )y L noise                                                                                                                                                                (8) 

 

In the approximation process, SPSA iteratively produces a sequence of estimates (e.g., 0



 , 1



 , 2



 , … , 1



h ) generated by 

a step procedure discussed below: 

 

Step 0: Initialization 

Set counter index h  equal to 0. Pick initial guess 0



  and non-negative coefficients, a , c ,  and   in SPSA gain 

sequences as shown in Eqs.9 and 10. It should depend on the practical scenario to set initial guess 0



  as empirical values. Note 

that 0



  represents the initial values of a vector with p decision variables, which must satisfy the constraints discussed later in 

Eqs. 14 - 16. A large a  enhances the performance in the later iterations by using a larger step size to search for the solution, 

while it will be effective to set c  as relatively smaller positive number. Recommended values for   and  are 0.602 and 0.01 

(Ting and Schonfeld, 1998), respectively, which affect the convergence speed to yield the optimal solution. 

 
–( 1)ha a h                                                                                                                                                                        (9) 

 

( 1)ch c h                                                                                                                                                                      (10) 
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Step 1: Generate Simultaneous Perturbation Vector 

Generate a random vector denoted as 
h  with p  components, which are independently generated from a zero-mean 

probability distribution, such as a Bernoulli ± 1 distribution with probability of 0.5 for each ± 1 outcome. Components 

generated based on uniform and normal distribution have infinite inverse moments, which and are not recommended, because 

the solution will not converge. 

 

Step 2: Evaluate Objective Function 

Obtain two measurements of the objective function denoted as ( )L  , based on a simultaneous perturbation offset the 

current h



  (e.g., ˆ( )h h hy c   and ˆ( )h h hy c   ) at iteration h  with 
hc and 

h obtained from Steps 0 and 1, respectively. 

Note that h



  represents the provisional optimal solution. For example, h



  must satisfy the constraints. If not, the boundary 

values considered in the constraints will apply, and the corresponding values of 
hc will be re-calculated. 

 

Step 3: Approximate Gradient 

Generate the simultaneous perturbation approximation to the (unknown) p -dimensional gradient denoted as )( hg


 : 

 

1

2

ˆ ˆ( ) ( )

2

ˆ ˆ( ) ( )

( ) 2

ˆ ˆ( ) ( )

2

h h h h h h

h h

h h h h h h

h h h

h h h h h h

h hp

y c y c

c

y c y c

g c

y c y c

c

 

 



 

 

     
 

 
 

     
  
 
 
 

     
  

                                                                                                                                                                              (11) 

 

where 
hi is the ith component of 

h . The denominators in Eq. 11 will alter the search direction for the optimal solution in 

next iteration. 

 

Step 4: Update h



  

Use the standard stochastic approximation form as formulated in Eq. 12 to estimate the solution at iteration 1h , denoted 

as 1



h . Thus, 

 

1
ˆ ˆˆ( )h h h ha g  



                                                                                                                                                                      (12) 

 

Step 5: Iteration or Termination 

Return to Step 1 and increase the counter index from h to 1h . Terminate SPSA if the difference between successive 

iterations is less than a pre-set value that is very small to approximate zero; and the last h



 is the estimate of the optimum


h . 

 

The SPSA algorithm is very general and can be applied in many different situations to optimize many different kinds of 

objective functions. For instance, ( )L  could be the function dealt with total throughput, while  could represent the optimal 

metering rates at different ramps in a freeway corridor or network considering various objectives (e.g., minimize delay or 

maximize throughput). The constraints can be imposed by adding penalty functions in the objective function. The flexibility of 

the algorithm stems from the fact that only objective function measurements are required, instead of full objective function or 

gradient information. The objective function measurements required by the SPSA algorithm can come from a real system as 

well as from a computer simulation from a real world probabilistic system. The efficiency of SPSA in solving high dimensional 

problems, especially when evaluating the objective function is expensive or time-consuming, has been discussed by Spall 

(1992). 

 

5. OPTIMIZATION 

In order to integrate SPSA algorithm and the ramp metering control model, the equivalent objective function of Eq. 6 can 

be formulated as Eq. 13. Through this conversion, the objective total throughput can be maximized by minimizing ( )L  : 

 
1

1 1

( ) ( ) ( ) ( ) ( ) ( )
K N

off

i i i i N N

k i

L Z T k k S k k S k    


 

 
   

 
                                                                                                                       (13) 
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where Z represents a big number. By substituting Eq. 3 into Eq. 13, the decision variables are time varying metering rates Ri(k), 

where λ represents a vector Ri(k) for metered ramp i at time interval k. In Eqs. 3, 4, and 13, the values of geometry related 

parameters [e.g., Z, N, δi
on, δi

off, i(k), T, Li, and li] can be collected from the study site, while the traffic values of related 

parameters [e.g., Qi(k), θi(k), i(k-1), q
0
 (k) and Si(k)] can be calculated from the data collected form detectors or other types of 

surveillance systems that can detect traffic volume, speed, and density information. 

One of the major criticisms of ramp metering has been delay caused on the ramps because of the queues created by ramp 

control strategies. Therefore, constraints (e.g., meter locations, ramp storage capacities, lower and upper bounds of ramp 

metering rates) are considered in this study while optimizing the metering rate. Considering the density and capacity of the link 

and the boundaries to define the feasible range of metering rages, the objective function formulated in Eq. 13 should be 

minimized subject to a set of constraints formulated in Eqs. 14, 15, and 16: 

 
max0 ( ) ,  ,i k i k                                                                                                                                                                  (14) 

 
max0 ( ) ,  ,i iQ k Q i k                                                                                                                                                                (15) 

 
min max( ) ,  ,i i iR R k R i k                                                                                                                                                             (16) 

 

Eq. 14 defines that the density of link i at interval k should be positive and less than the maximum density max. Similarly, the 

flow of link i at any interval k in Eq. 15 must be positive and less than the link capacity Qi
max. The constraint in Eq. 16 defines 

that the range of feasible metering rates, where Ri
min

 and Ri
max represent the lower and upper boundaries of metering rates, 

respectively. 

Assume that vehicles approach a ramp meter with a mean arrival rate m, the relation between the queue storage capacity Lq 

(number of vehicles) and the metering rate Ri(k) can be expressed by an M/M/1 queuing model as shown in Eq. 17. 

 

( )
q

i

m
L

R k m





                                                                                                                                                                        (17) 

 

where  is the ratio of vehicle arrival rate m and ramp service rate Ri(k). Note that, the ramp service rate is the ramp metering 

rate during control interval. In this study, the service rate is equivalent to the ramp metering rate. 

The maximum storage capacity of a metered ramp can be determined by the total lane-miles of the ramp divided by the 

average vehicle length (e.g., 20 feet). The minimum metering rate Ri
min guarantees that the queuing length Lq will not exceed the 

storage capacity. Thus, the queuing vehicles on the metered ramp will not spillback to the local street. Ri
min can be derived from 

Eq. 17 as 

 

min q

i

q

L
R m

L

 
  
 
 

                                                                                                                                                                    (18) 

 

According to previous study (Chien and Luo, 2008), the maximum metering rate Ri
max was suggested 900 vph (4.0 

seconds/vehicle), considering driver’s reaction and operation time and the time consumed for vehicle acceleration. The 

feasible range of metering rate can thus be determined. 

In this study, SPSA is integrated into a microscopic traffic simulation model as shown in Figure 2, in which real-time 

metering dates will be optimized corresponding to time-varying traffic volumes fed into a freeway network. Therefore, the 

optimal ramp metering rates can be dynamically found by SPSA, considering dynamic traffic conditions and capacity 

constraints (e.g. on-ramp volumes, mainline capacity and the boundaries of feasible metering rates, etc.). The input parameters 

for optimizing metering rates will be automatically fed by the simulation model. 

 

6. SIMULATION ANALYSIS 

A 12-mile segment of eastbound I-80 in New Jersey is selected to evaluate the proposed dynamic metering control model, 

which contains seven on-ramps and five off-ramps supporting the entry and exit flows. The daily traffic is over 100,000 

vehicles. The mainline speed limit is 65 mph, and the speed limits on ramps range from 20 to 40 mph. 

 

6.1 Network Modeling 

The network is coded along the mainline considering critical points such as interchanges, potential ramp meter locations, 

curvature/superelevation change, and entry or exit points. In the network modeling as shown in Figure 3, each link consists of 

two nodes, which represents one direction of a freeway segment. 

The data describing freeway geometric, traffic movements and freeway features (e.g., location of ramps and warning signs) 

are input into CORSIM. Traffic operations during a peak hour (7:00am-8: 00am) on the eastbound of I-80 are simulated, while 
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discrepancies are reduced by calibrating parameters (e.g. car-following sensitivity factor, lane change time and percentage of 

cooperative driver) in the simulation model (Chien et al., 2005). 

 

 
 

No 
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Figure 2. The real-time metering control system 
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Figure 3. Link – node diagram of the study site 
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The calibrated model is validated through comparing simulation outputs with the field counterparts. The statistical analysis 

is conducted by calculating mean absolute percentage errors (MAPE) and root mean square errors (RMSE) between the field 

and the simulated traffic volumes of various links on the mainline. The results show that the simulation model can accurately 

reflect the traffic speed on this segment. 

 

6.2 Data Processing 

In Eq. 1, the density i(k) of link i at interval k can be determined by i(k-1) and the entry and exit flows. As suggested by 

Highway Capacity Manual (2000), i(k) should not exceed the maximum value 45 veh/ln-mi, if the free flow speed is 65 mph. 

If i(k) is greater than 45 veh/ln-mi, the suggested ramp metering rate Ri(k) should be set as default value of )(min kRi
. 

The SPSA algorithm is developed to maximize the total throughput achieved by optimized ramp metering rates. The input 

data, including θi(k), i(k-1), q0(k), Si(k), Qi(k) and Ri(k), are initialized at the beginning of the first time interval, which will be 

updated in real-time during the course of the evaluation period. While optimizing the metering rates, parameters a and c in 

SPSA are modified iteratively in Eqs. 9 and 10. 

As discussed earlier, the optimal metering rate in each interval is derived based on the data (simulation output) collected 

from the previous time interval. Reducing the length of time interval can increase the precision of the control by accurately 

capturing time varying demand and density. However, the computation effort increases as well. In real world, the appropriate 

length of time interval should be determined to achieve optimal control. In this study, the time interval of 3 minutes is applied. 

The input of the proposed model, including link volume, accumulated vehicle-mile, and average delay of the network, are 

collected during simulation and fed into the SPSA algorithm. Since CORSIM only generates accumulated statistics, additional 

calculation is performed to obtain the MOEs (e.g., volume, vehicle-mile, and delay) statistics for individual intervals. A macro 

program has been developed with Microsoft Excel to fast retrieve accumulative simulation statistics generated in each time 

interval. The time varying total delay and total throughput can thus be derived for benefit assessment. Note that the total delay 

is obtained from the total vehicle-miles travel multiplied by the average delay in minute per vehicle-mile, while the total 

throughput is the sum of the exit volumes in each interval. 

The benefit assessment of the dynamic ramp metering control with SPSA is conducted by comparing total throughput and 

delay with and without the proposed dynamic metering control model. 

 

6.3 Performance Analysis 

In order to evaluate the benefit of the developed model, the time-varying traffic flows over 16 time intervals, entering from 

the mainline entry link and on-ramps are summarized in Table 1. To observe the impact of entering flow to the performance 

of the proposed control, the flow of link 300-301 increases 200 vph by interval, while the flows entering the on-ramps are fixed. 

Two scenarios are designed for conducting a comparative analysis. 

 

Table 1. Traffic Demand for the Network 

 

Time 

Interval* 

Entry Flow Node 306 Node 307 Node 345 Node 356 Node 376 Node 377 Node 395 

vph 

1 2960        

2 3160        

3 3360        

4 3560        

5 3760        

6 3960        

7 4160 360 489 2159 819 400 1216 430 

8 4360        

9 4560        

10 4760        

11 4960        

12 5160        

13 5360        

14   5560        

15   5760        

16   5960        

*: The duration of each time interval is 3 minutes. 
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■ Scenario A (Individual Control): The optimal metering rate of each ramp was optimized individually without 

coordination. The metered ramps are Nodes 306, 307, 356, 376, and 395, where the corresponding optimal metering 

rates over the study intervals are summarized in Table 2. Note that the durations of time intervals are identical and is 

3 minutes. 

■ Scenario B (Coordinated Control): The coordinated metering rates of controlled ramps (same as those discussed in 

Scenario A) are jointly optimized with SPSA. The optimal metering rates over the study intervals were found slightly 

different from those derived in Scenario A (Table 3). 

 

Table 2. Optimal Metering Rates for Individual Ramp Control 

 

Time Interval* Node 306 Node 307 Node 356 Node 376 Node 395 

Metering rate (vph) 

1 705 794 895 737 766 

2 705 794 895 737 766 

3 705 794 895 737 766 

4 720 815 900 753 783 

5 735 836 900 771 802 

6 751 858 900 789 822 

7 767 881 900 808 842 

8 779 881 900 820 842 

9 779 881 900 820 842 

10 779 881 900 820 842 

11 779 881 900 820 842 

12 779 881 900 820 842 

13 779 881 900 820 842 

14 779 881 886 819 774 

15 779 881 860 758 761 

16 779 881 835 744 748 

*: The duration of each time interval is 3 minutes. 

 

Table 3. Jointly Optimal Ramp Metering Rates 

 

Time Interval* Node 306 Node 307 Node 356 Node 376 Node 395 

Metering Rate, vph (Headway, seconds) 

1 650 (5.54) 766 (4.70) 900 (4.00) 753 (4.78) 799 (4.51) 

2 650 (5.54) 766 (4.70) 900 (4.00) 753 (4.78) 799 (4.51) 

3 650 (5.54) 766 (4.70) 900 (4.00) 753 (4.78) 799 (4.51) 

4 664 (5.42) 766 (4.70) 900 (4.00) 769 (4.68) 816 (4.41) 

5 680 (5.29) 766 (4.70) 900 (4.00) 787 (4.57) 835 (4.31) 

6 696 (5.17) 776 (4.64) 900 (4.00) 805 (4.47) 855 (4.21) 

7 712 (5.06) 799 (4.51) 900 (4.00) 824 (4.37) 875 (4.11) 

8 724 (4.97) 799 (4.51) 900 (4.00) 824 (4.37) 875 (4.11) 

9 723 (4.98) 799 (4.51) 900 (4.00) 824 (4.37) 875 (4.11) 

10 719 (5.01) 754 (4.77) 900 (4.00) 900 (4.00) 889 (4.05) 

11 713 (5.05) 747 (4.82) 900 (4.00) 900 (4.00) 900 (4.00) 

12 709 (5.08) 742 (4.85) 900 (4.00) 900 (4.00) 900 (4.00) 

13 705 (5.11) 737 (4.88) 891 (4.04) 900 (4.00) 900 (4.00) 

14 693 (5.19) 721 (4.99) 865 (4.16) 900 (4.00) 900 (4.00) 

15 681 (5.29) 705 (5.11) 839 (4.29) 867 (4.15) 900 (4.00) 

16 668 (5.39) 689 (5.22) 814 (4.42) 887 (4.06) 900 (4.00) 

*: The duration of each time interval is 3 minutes 

 

Considering the existing traffic entry flow of 4,160 vph on mainline, the total throughput before the implementation of 

metering control is 442 veh/3-min, while that under Scenarios A and B are 478 and 482 veh/3-min (Table 4), respectively. 

Apparently, considering the improvement of throughput, Scenario B (Coordinated Control) outperformed Scenario A 
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(Individual Control), albeit the delays under both scenarios (625.3 and 687.6 veh-min) are higher than no control (623.9 

veh-min). 

As shown Figure 4, the throughputs under Scenarios A and B vary over time. With coordinated control (from the 3rd to 9th 

intervals), the accumulated total throughputs of Scenarios A and B increase by 6.85 % and 8.07%, respectively. Consider the 

overall performance for the whole simulation period (from the 1st to 16th intervals), the accumulated total throughputs of 

Scenarios A and B increase by 0.77 % and 1.16%, respectively. 

 

Table 4. Total Throughputs and Total Delay for Multiple Ramp Control 

 

Time Interval Entry Flow Total Throughputs 

(veh/3min) 

Total Delay 

(veh-min) 

 (vph) Before Scenario A Scenario B Before Scenario A Scenario B 

1 2960 467 422 432 614.5 629.0 603.7 

2 3160 492 452 431 619.7 636.1 641.6 

3 3360 437 462 449 560.3 616.5 623.7 

4 3560 448 441 475 655.0 652.2 638.2 

5 3760 438 472 519 624.0 642.0 610.3 

6 3960 422 480 447 527.2 595.0 599.3 

7 4160 
442 

(0%) 

478 

(8.14%) 

482 

(9.05%) 

623.9 625.3 687.6 

8 4360 448 468 487 742.5 737.7 715.0 

9 4560 450 497 477 836.0 810.5 719.8 

10 4760 482 473 494 981.4 853.4 874.4 

11 4960 498 467 461 973.0 1000.3 859.2 

12 5160 512 505 454 1170.2 1003.3 1049.3 

13 5360 509 506 553 1278.9 1093.3 1089.3 

14 5560 532 525 516 1338.6 1288.6 1184.9 

15 5760 537 513 543 1469.0 1369.0 1364.9 

16 5960 542 556 529 1554.1 1627.7 1480.0 

Total (1-16) 7656 7715 7745 14568.2 14179.9 13741.3 

% 0.00 0.77 1.16 0.00 -2.66 -5.68 

Total (3-9) 3085 3296 3334 4568.8 4679.2 4594.0 

% 0.00 6.85 8.07 0.00 2.41 0.55 

Total (8-15) - - - 10343.6 9783.8 9336.9 

% - - - 0.00 -5.41 -9.73 

*: The duration of each time Interval is 3 minutes. 

 

 

Figure 4. Total Throughput over Time 

 

Figure 5 indicates the relationship between the total delay and time. It was found that without metering control, the 

accumulated total delay from the 8th to 15th time interval was 10,343.6 vehicle-minutes, while that under Scenarios A and B are 

9783.8 and 9336.9 veh-min (Table 4), respectively. Consider the overall performance for the whole simulation period (from the 

1st to 16th intervals), the accumulated total delays of Scenarios A and B decreased by 2.66 % and 5.68%, respectively. 



Chien, Luo, and Ting: Optimization of  Coordinated Multi-Ramp Metering Control with Simultaneous Perturbation Stochastic Approximation  

IJOR Vol. 8, No. 1, 2335 (2011) 
34 

In general, the optimal coordinated control outperformed the optimal individual control in increased throughput and 

reduced delay; and both controls were better than no control. 

 

 

Figure 5. Total Delay over Time 

 

7. CONCLUSION 

Unrestricted flows emitted from on-ramps may result in bottlenecks and attendant congestion on freeways specifically 

during peak periods. When the traffic flow on the mainline exceeds its capacity, congestion and queue are formed. A sound 

metering control system is intended to mitigate congestion, which has been developed in this study, by increasing throughput 

with regulated flows entering from ramps. In order to optimize dynamic metering rate, the time-varying relationship among 

upstream demand, downstream capacity, and entering/exiting volumes on ramps was developed. 

The objective function of the coordinated multi-ramp metering control problem is total throughput, which is a constrained 

discrete-time non-linear optimal control problem. SPSA is successfully applied to search for the optimal solutions (metering 

rates) in a series time intervals, which maximize total throughput. A simulation approach (with CORSIM) is applied to evaluate 

the performance of the developed model, which produce emulated real-time information to feed SPSA to search for the 

optimal solution. 

Two scenarios - individual and coordinated multi-ramp metering controls were considered, subjected to actual ramp storage 

space for vehicle queues. The results of the study are very promising, which demonstrate the efficiency and general 

applicability of SPSA and the performance achieved by optimal coordinated multi-ramp metering control. The issues 

illustrated below will be considered as potential extensions of this study: 

 Simulation results shows that achieving the maximum total throughput and the minimum total delay can not be 

achieved simultaneously. The tradeoff analysis between increased throughput and associated delay would be further 

investigated.  

 In the developed model, the objective was to maximize total throughput. Other objective functions, such as total 

delay, fuel consumption, vehicle emissions, or the combination of them, may be considered.  

 With metering control, either individual or coordinated, the behavior of demand due to increasing delay on metered 

ramps shall be investigated. 
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