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Abstract We consider a pickup and delivery vehicle routing problem (PDP) commonly find in real-world logistics 

operations. The problem includes a set of practical complications that have received little attention in the vehicle 

routing literature. In this problem, there are multiple vehicle types available to cover a set of transportation orders, 

each of which has pickup time windows and delivery time windows. Transportation orders and vehicle types must 

satisfy a set of compatibility constraints that specify which orders can or cannot be covered by which vehicle types. In 

addition we include some dock service capacity constraints as is required on common real world operations when there 

is a large quantity of vehicles to schedule. This problem requires to be attended on large scale instances (transportation 

orders ≥ 500), (single-haul vehicles ≥ 100). As a generalization of the traveling salesman problem, clearly this problem 

is NP-hard. The exact algorithms are too slow for large scale instances. The PDP-TWDS is both a packing problem 

(assign order to vehicles), and a routing problem (find the best route for each vehicle) with several side constraints. We 

propose a model to solve the problem in three stages. The first stage constructs initial solutions at aggregated level 

relaxing time windows and dock service constraints on the original problem. The other two stages imposes time 

windows and dock service constraints within a cut generation scheme. Our results are favorable in finding good quality 

solutions in relatively short computational times.   

 

KeywordsOptimization, vehicle routing, logistics & distribution planning, scheduling, time windows. 

 

 

1. INTRODUCTION 

Multiple Vehicle Pickup and Delivery Problem with Time Windows and Dock Service Constraints (PDP-TWDS) is 

an important problem in logistics and transportation management. The PDP-TWDS is a variant of the well-known 

Vehicle Routing Problem with Time Windows (VRP-TW). Particularly, our real-world application deals with the 

schedule of a transportation operation on a network with several plants and distribution centers. Vehicle routing plays 

a central role in logistics management. A wide variety of vehicle routing problems have been studied in the literature. 

Different vehicle routing problems address different practical situations but focus on a common and a simple problem, 

the efficient use of a fleet of vehicles that must pick up and/or deliver a set of transportation orders within a time 

window framework. This implies to identify which transportation orders should be covered by each vehicle and at 

what times so as to minimize the total transportation cost subject to a variety of constraints and complications. 

The model we propose on this work is integrated in an interactive and user-friendly Geographic Information System 

(GIS) application, named MAPINFO. This paper illustrates the potential of the proposed approach as an ease of use 

decision tool in the context of a study case developed on a large soft drinks company that operates in the city of 

Monterrey, México. Embotelladoras ARCA (www.e-arca.com.mx) is a company dedicated to the production, 

distribution and sale of soft drinks brands owned by The Coca-Cola Company, some own-labels and third parties. 

ARCA was formed in 2001 by integrating three of the oldest bottlers in Mexico and become the second largest bottler 

of Coca-Cola products in Latin America and the fifth in the world. The company distributes its products in the north 

region of the Mexican Republic and since 2008, in the northeastern region of Argentina and in the entire republic of 

Ecuador. ARCA also produces and distributes branded salty snacks Bokados. Thus, the company has an enormous 

market that makes us think that it could be better achieved by taking into account an operation research model. The 
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company faces a Pickup and Delivery Problem with Time Windows and Dock Service Constraints (PDP-TWDS). On 

this work we are going to focus our application in the transportation operation on the north territory of México.  

Our business application considers that the available vehicle fleet is represented on a node basis. In other words, at 

the beginning of the planning stage, each plant or distribution center provides the expected number of available trucks 

per type and at a specific starting time hour. This information defines the consolidated transportation capacity. 

Because of carrier requirements contract, we start and finish a route at the origin depot. Indeed, contract payment used 

in practice by the industry fix the transportation price on the basis that a route starts and finishes at the first pickup site. 

In our PDP context, each transportation order has a single time window. This is an earliest pickup time at origin and a 

latest delivery time at destination. From a practical standpoint for our business application, we have a set of 

transportation orders with an origin and a destination (O-D). Usually transport planners at the company attempt to 

determine first the route for each O-D pair, and later assign trucks to these predetermined routes. The problem of 

determining the best assignment of trucks to O-D routes is typically referred as an assignment problem where trucks 

are assigned to routes or transportation lanes such that all transportation orders are covered and transportation costs 

are minimized.  

 It is easy to verify that with each head haul move of the truck, goods are transported from its origin to its 

destination and revenue is generated. However, without goods, the truck moves an empty haul, in which only costs are 

incurred and no revenue is generated. Attempt to enforce a transportation order from a destination location back to its 

origin location results on an unsuccessful practice. This is because the truck will run an empty haul. These empty hauls 

represent a serious problem for transportation operations, as well as the country's economic system. This is clearly true 

because an empty haul does not generate any economic value. Thus, we can verify that the least efficient route that can 

be planned by a dispatcher is the one of simple trips where the vehicle travels loaded from the origin to the delivery site 

and then returns empty. On this case, half of the hauling distance is traveled empty. Moreover, we have another serious 

company issue. If a dispatcher tries to avoid simple trips, the actual structure of transportation flows that he is 

responsible for in the company, does not always permit it. It is clear in this situation, that pooling these transportation 

orders with those of another dispatcher may avoid simple trips by replacing the empty return of a simple trip with a 

transportation request of another dispatcher. Thus, the new structure of transportation flows generated by the 

collaboration of two or more dispatchers will allow important transportation cost-savings for the company. The empty 

part of the overall route is smaller when two trips are pooled together compared when making them independently.  

It is estimated that at least 36% of truck movements in the company are empty haul moves. This means millions of 

kilometers of empty haul moves and also millions of liters of fuel lost per year. This is a major economic loss for the 

company, especially in the current situation where fuel prices have skyrocketed. On the country context, the 

Department of Land Transportation in México note that over 160,000 tons of pollution is released to the environment 

directly as a result of empty haul moves. Thus, empty hauls are a serious problem which needs immediate attention. 

Due to our PDP-TWDS is NP-Hard, combined with the fact that real world PDP’s are very large, having hundreds of 

transportation requests to serve, there is no much hope for finding an optimal model that will work acceptably fast in 

practice. We propose a Hybrid Mixed Integer Programming (HMIP) approach to this complex problem which is 

focused on finding good solutions in reasonably short computational times. The paper is organized as follows. In 

Section 2 we introduce the problem definition and its associated complications. In Section 3 we briefly sketch some 

related problems and previous research work. In Section 4 we proceed to introduce some notation and present our 

model approach structured on three stages. Section 5 contains a description of some empirical results we found on our 

implementation. On section 6 we present some concluding remarks. 

 

2. PROBLEM DEFINITION 

As is defined, in a general PDP problem a set of routes must be generated in order to satisfy a set of transportation 

requests at a total minimum cost (or a similar objective function) and subject to a set of constraints. Each 

transportation request (i.e. a transportation order) specifies a volume of product, a site of origin and a destination site. 

Each request must be transported by only one vehicle. However we consider that some trans-shipments can occur 

across a route sequence from one node to the next. For all this operation, a previous defined fleet of vehicles is 

available. These vehicles are spread throughout a set of specific depot sites. This fleet of vehicles may consist of 

different vehicle-types, each with a unique set of transportation relevant characteristics. Indeed, in a PDP-TW problem, 

time windows constraints are usually added to the transportation requests. This is specifying a time interval for pickup 

and/or delivery operation at the origin or destination site. 

The PDP is a generalization of the VRP, which is a generalization of the TSP, the well-known hard combinatorial 

optimization problem. Considering also that the problem in practice is, usually, of a large-scale, it is obvious why the 

problem is a challenge. The general pickup and delivery problem (GPDP) is a problem of finding a set of optimal 

routes, for a fleet of vehicles, in order to serve a set of transportation requests. Each vehicle from the fleet of vehicles 

has a given capacity, a start location, and an end location. Each transportation request is specified by a load to be 
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transported, an origin, and a destination location. In other words, the pickup and delivery problem deals with the 

construction of optimal routes in order to visit all pickup and delivery locations and satisfy precedence and pairing 

constraints. From here we can move on to include some others considerations. That is, the problem deals with a 

number of transportation orders that are to be served by a fleet of vehicles while a number of constraints must be 

observed. Each vehicle has a limited capacity (the capacity constraint). Each vehicle starts and ends at a specified depot. 

A request must be picked up from a pickup location to be delivered to a corresponding delivery location. In addition, 

every request must be served within a predetermined time window (TW) interval (the time window constraint). A 

vehicle may serve multiple transportation orders as long as time windows and other capacity constraints are satisfied. A 

solution to the problem should assign requests to vehicles and find a route for each vehicle, such that the total service 

cost is minimized and all problem constraints (precedence, capacity, time windows and dock service) are adhered with. 

The total volume of product to deliver on some nodes may exceed the capacity of all types of truck. Thus a site within 

the same route could be visited more than once. In addition, in the classical PDP, when a delivery has been made, no 

pickup is allowed until the truck is empty. However in our problem's case, when a delivery has been made, we allow 

pickup even if the truck is not completely empty. This makes routing much more complex than classical PDP. The 

problem can be outlined in: (1) objective function and (2) operation constraints. 

 

2.1 Objective Function 

The goal of our model is to determine the optimum route for a multiple vehicles dedicated for a given physical 

distribution operation. A route is defined as the arrival sequence of a vehicle (i.e. single or double trailer) which has to 

attend to a set of nodes or warehouses waiting for service. This service can be defined as a delivery or pickup of any 

kind of item (i.e. product). In a typical operation we arrive to a node, make a delivery for product A and then afterwards 

pickup for product B that is required on another point that is ahead on the route sequence. On any case, the vehicle 

departs from an origin node (i.e. a distribution center) and then returns to the same node at the end of the route. An 

optimal route is obtained when we achieve the minimal cost (or distance or time) in order to attend all the customer 

nodes waiting for service.   

 

2.2 Operation Constraints 

1. We have a network with pickup and delivery locations. Let’s define N as the set of nodes i on the network (i.e. 

plants, distribution centers or customers) where ∀ i ∈ N. 

2. We have a set M of different vehicles, where m ∈ M, that are considered as the available fleet in order to perform 

the transportation process. Several origin nodes are defined on the network where vehicles start from. For each 

vehicle m one only origin node is defined. Let’s define P(i) as the subset of vehicles located at node i where P(i) 

⊆ M and ∀ i ∈ N. 

3. At the start of the day, each vehicle leaves from the origin node. Then each vehicle attends to a set of 

geographically scattered nodes i (i.e. customers). At the end of the route, each vehicle returns to its origin point.  

4. We have a set of transportation orders R to be executed from origin nodes (i.e. plants) to destination nodes (i.e. 

warehouses). Each order r ∈ R consists of a pickup at some location i and a delivery at some other location j in 

the underlying transportation network. Precedence constraints must be considered which imply that a vehicle 

m should visit the pickup location i before the delivery location j of each transportation order r.  

5. In addition, we have several types of products that are required to transport. Let’s define K as the set of 

different SKUS k including regular and returnable products, where k ∈ K. Thus, we define parameter Dijk as the 

total planned demand to transport from node i to node j for each SKU k, where (i,j,k) ∈ R, ∀ i,j ∈ N. 

Furthermore, we can aggregate the total demand to transport from node i to node j. Let’s define V as the subset 

of transportation lanes where some volume has to be delivered or picked up where (i,j) ∈ V, ∀ i,j ∈ N. 

6. Each vehicle has a finite load capacity. Vehicle Capacity is modeled as the quantity of boxes, pallets or weight 

that the vehicle can load taking in mind the space constraints as well. Vehicle capacity is defined at a SKU level 

in such a way we can cubic a capacity requirement to transport any given mixture load. A mixture load is any set 

of different volumes per SKU k to complete a full transportation order. Let’s define parameter Hk as the 

quantity of cases of SKU k that can be loaded per cubic meter ∀ k ∈ K. 

7. Each trailer has a loading & unloading access by the sides. Thus, this design is not affected by the nested 

precedence constraints we find on the general freight PDP in which loading and unloading access is restricted 

by the truck trailer rear door. 

8. Each order r ∈ R is a specific mix of products (i.e. different SKU’s) which has a weight and space requirement. 

Capacity constraints guarantee that any mixture load of items on a vehicle m should be less than the vehicle 

capacity. Let’s define parameter Qm as the quantity of cubic meters on the vehicle m, where m ∈ M. According 

to the sequence of the route, all the time we must observe the load capacity of the vehicle m. 
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9. Certain compatibility constraints must be satisfied in real-world distribution operations because of physical and 

legal restrictions. For each vehicle m we have some nodes where the vehicle can operate for pickup or delivery 

operations. Thus, the use of a vehicle can be constrained at the transportation lane level. Let’s define A(i,j) as 

the subset of compatible vehicles m that can be used for transportation lane (i,j) where A(i,j) ⊆ M, m ∈ M, (i,j) ∈ 

V and i,j ∈ N. In other words, a vehicle cannot arrive to nor departs from any node not included on that defined 

sub set.  

10. The quantity of time (i.e. hours) required to accomplish the delivery and the pickup service in each node i 

depends mostly on the vehicle capacity. This consideration is true because vehicle capacity is close related to 

the volume of product that is delivered or pickup at any given node. Thus, we define the parameter TS as the 

service time for any single trailer configuration. By the other hand, we have parameter TF as the service time 

for any double trailer.   

11. Each node has a particular time window for service. Due to any location (e.g., plant, warehouse, retail store, etc) 

has a specific working period, the pickup or delivery of a transportation order r at a location i can only take 

place during its working period. A time window is defined by an open & close time that should be considered 

for make a deliver or pickup on the node. Time windows constraints make sure that a service has to be given 

between the earliest arrival time and the latest arrival time. Let’s define parameters IN(i) and CN(i) as the 

opening time and closing time at node i respectively where i ∈ N. 

12. The same constraint about time windows applies at a vehicle level. This means that any given vehicle m cannot 

operate before its open window neither after its close window. Thus, a transportation order r is associated with 

a specific time interval within pickup or deliver operation must be done. The wide of the time window at each 

node i or vehicle m is equal to the difference between the closing and opening time for service. Each time 

window has different wide depending on the characteristics of the location (e.g., plant, warehouse, retail store, 

etc) or the vehicle as is corresponds. Let’s define parameters IVm and CVm as the opening time and closing 

time for the vehicle m respectively where m ∈ M. 

13. According to the sequence of the route, we will obtain arrivals and departures times for each vehicle across the 

locations on the network. However, we define for each location a specific quantity of docks available for 

service. Indeed, this capacity service at each location is not constant because is constrained depending on the 

hour of the day. Our approach to deal with this dock service capacity is to constraint the quantity of vehicles 

that can arrive at each node and at each hour of the day. As we can verify here, dock service capacity imposes 

new time windows constraints which emerge according the traffic of vehicles waiting for service at any location 

and at any hour. Let’s define the parameter Sih as the quantity of docks available for service at node i at working 

hour h where i ∈ N, h ∈ {1, ..., 24}.  

14. Finally, we have a cost matrix and a time matrix that defines the cost and time required to go from each node to 

all others on a distribution network. Moreover, transportation cost and time for each transportation lane (i, j) 

depends on the type of vehicle. Let’s define the following network parameters: 

STij = transportation time on arc (i, j) for a single trailer ∀ (i, j) ∈ V 

FTij = transportation time on arc (i, j) for a double trailer ∀ (i, j) ∈ V 

SCij = transportation cost on arc (i, j) for a single trailer ∀ (i, j) ∈ V 

FCij = transportation cost on arc (i, j) for a double trailer ∀ (i, j) ∈ V 

 

3. PREVIOUS RELATED WORK 

Time constrained sequencing and routing problems arise in many practical applications. Typically, computational 

difficult for those type of problems has been measured in terms of its size. However the difficult for PDP-TWDS 

depends strongly on the structure of the time windows that are defined around the nodes and vehicles as well. Indeed, 

multiple vehicles environment generates some dock service capacity constraints. Both the PDP and PDP-TW are 

generalizations of the classical Vehicle Routing Problem (VRP) and are thus NP-hard. As a result, the development of 

solution methods for these problems has focused on heuristics J.-F. Cordeau, G. Laporte, and M.W.P. Savelsbergh 

(2006). 

There are well known and extensively studied routing problems which are special cases of the General-PDP. The 

Dial a Ride Problem (DARP) is a routing problem in which the loads to be transported represent people. Therefore, 

we usually speak of clients or customers instead of transportation requests and all load sizes are equal to one. The 

Vehicle Routing Problem (VRP) is a routing problem in which either all the origins or all the destinations are located at 

the same depot. The research of time constrained pickup and delivery problems emerged in the last 15-20 years. 

Researchers have developed a variety of heuristics and optimization methods. The development of optimization 

methods started in the early 1980s and lasted almost a decade. Heuristics for solving real-life pickup and delivery 

problems began to appear in the literature in the 1970s. The majority of published work on General-PDP is on 
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dial-a-ride problems (DARP). In contrast to this, very little work has been done on pickup and delivery of packages 

and goods with time windows constraints (PDP-TW). 

In regard to routing applications, we found that the variant with less research work corresponds to physical product 

distribution (Mitrovic 1998). We have the basic model named Traveling Salesman Problem with Time Windows 

constraints (TSP-TW). Christofides et al. (1976) describe a branch-and-bound algorithm in which the lower bound 

computation is performed via a state space relaxation in a dynamic programming scheme. Problem instances were 

solved up to 50 nodes with "moderately tight" time windows. Dumas et al. (1995) present a dynamic programming 

algorithm for the TSP-TW. They were able to solve problems of up to 200 nodes with "fairly wide" time windows. We 

refer now about the work presented by Ascheuer et al. (2001) for the TSP-TW. They tested instances up to 233 nodes. 

For an instance of 69 nodes was required 5.95 minutes of computational time. In general, all larger instances required 

more than 5 hours of computational time to converge in a feasible solution. The experimental results with the 

TSP-TW made by Ascheuer et al. proved that this problem is particularly difficult to resolve for instances with more 

than 50% of active nodes with time window constraints. 

We move our research now from the typical TSP-TW to a more sophisticated problem named as Vehicle Routing 

Problem (VRP). The most widely studied extensions of the VRP are the capacitated vehicle routing problem (C-VRP) 

and the vehicle routing problem with time windows (VRP-TW). The basic model C-VRP assumes that all the vehicles 

are homogeneous with the same capacity and located initially at the same node (i.e. depot) and customers have no 

specific service time windows (i.e. can be covered at any time). A more complex model is the VRP-TW. On VRP-TW 

customers have time windows within which they must be covered. Solomon (1984) developed 87 test instances for the 

VRP-TW. Indeed, the largest instance he solved was about 100 nodes. Until year 1999 there were 17 instances that still 

remained without being solved. In that year in Rice University, were solved 10 of these instances (Cook & Rich 1999). 

VRP with multiple pickup and delivery locations have been studied by Savelsbergh (1998) and Hasle (2003).  

The most general model is the Pickup and Delivery problem with Time Windows Constraints (PDP-TW). PDP-TW 

is more difficult to solve than VRP–TW. This is true because, the first problem is a generalization of the second 

(Palmgren 2001). According with Savelsbergh (1995), we have a variant for one alone vehicle (SPDP-TW) and one 

another for multiple vehicles (MPDP-TW). The first case is considered a restrictive TSP-TW while the second variant 

is considered a restrictive VRP-TW. The PDP-TW is NP-hard since the VRP and PDP is NP-hard (Desrosiers, 

Dumas, Solomon, & Soumis, 1995). Indeed, it is strongly NP-complete to find a feasible solution for the PDP. 

Furthermore, Tsitsiklis (1992) showed that even the basic TSP-TW is strongly NP-complete. Our PDP-TWDS is less 

studied than the classical vehicle routing problems. Indeed, this problem is a generalization of the vehicle routing 

problem (VRP) and the pickup and delivery problem (PDP). The problem involves a set of practical features that are 

commonly seen in practice but have received little attention in the vehicle routing literature. Some complex features 

involved in the PDP-TWDS such as dock service capacity and compatibility constraints, have not been addressed in 

the vehicle routing literature. For PDP-TWDS extension we just add some constraints on dock capacity service at each 

node and at each hour of the day. Therefore, the PDP-TWDS is more general and more complex to solve than any 

existing VRP-TW or a single PDP model. Furthermore, no existing model has incorporated dock service capacity 

constraints explicitly.  

The first optimization algorithm for the PDP-TW was a branch-and-price algorithm presented by Dumas, 

Desrosiers, & Soumis (1991). A column generation approach was proposed. Indeed, a set partitioning formulation is 

solved by a branch-and-price method in which columns of negative reduced cost are generated by a dynamic 

programming algorithm. The method has been successful in solving instances with tight capacity constraints and a 

small number of requests per route. They show that this approach is capable of solving some instances with up to 22 

vehicles and 190 requests. Savelsbergh & Sol (1995) presented an integer programming formulation of the general 

pickup and delivery problem (GPDP) which considered several pickup and delivery locations of a transportation 

orders. Savelsbergh and Sol (1998) proposed a branch-and-price algorithm for the PDP-TW using both a heuristic 

algorithm and a dynamic programming algorithm for the column generation problem. They applied a new branching 

scheme based on assignment rather than routing decisions. In the past two decades, a tremendous amount of research 

results on these models have been published. Recent books and survey papers include, among others, Laporte (1992), 

Desrosiers et al. (1995), Fisher (1995), Savelsbergh and Sol (1995), Powell et al. (1995), Bramel and Simchi-Levi (1997), 

and Crainic and Laporte (1998).  

Cordeau et al. (2003), developed a branch-and-cut algorithm for the DARP, based on a three-index formulation 

with a polynomial number of constraints. It uses several families of valid inequalities that are either adaptations of 

existing inequalities for the TSP and the VRP. However, direct implementation of methods for solving DARP is not a 

solution for GPDP. The GPDP is mostly capacited and the time windows are wider. These differences seem to imply 

that the set of feasible solutions is larger in GPDP than in the problems where people are transported. More recently, 

a branch-and-cut algorithm for the capacitated multiple-vehicle PDP and PDP-TW was later described by Lu and 

Dessouky (2006). Their formulation contains a polynomial number of constraints and uses two-index flow variables, 

but relies on extra variables to impose pairing and precedence constraints. Instances with up to 5 vehicles and 25 
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requests were solved optimally with this approach. By using appropriate inequalities, Ropke et al. (2006) introduced a 

new formulation for the PDP-TW which do not require the use of a vehicle index to impose pairing and precedence 

constraints. They report computational experiments on several sets of test instances and show that this approach is 

capable of solving some instances with up to 8 vehicles and 96 requests. In general, the best results found on literature 

are obtained by column generation methods. Instances of up to 880 requests and 53 vehicles can be solved with this 

method. 

Many solution methods have appeared for vehicle routing problems. In general, heuristics can solve problems with 

larger scales in less computation times than optimization methods. For example, the recent progress in meta-heuristics 

such as Tabu Search, simulated annealing, and genetic algorithms (Gendreau et al., 1997; Golden et al., 1998) can solve 

vehicle routing problems with wide time windows with nearly 500 transportation requests. However, as pointed out by 

Fisher (1995), heuristics usually lack robustness and their performance is very much problem dependent. Fisher states 

that “It’s not uncommon that a heuristic developed for a particular geographic region of a company’s operation will 

perform poorly in another region served by the same company.”  

It is not easy to compare different approaches to the PDP-TW. Moreover, in most of the cases authors only use 

randomly generated data. It is not clear what their findings mean for "real-world instances" which is actually our case. 

The existing vehicle routing models are useful for various practical applications. However, many important practical 

issues have not been addressed in these models, as pointed out by Fisher (1995), "Real vehicle routing problems 

usually include complications beyond the basic model....". Given the enormous complexity of the PDP problems, it is 

not realistic to apply pure optimization methods. Instead, we focus on a strategy that can not only be as robust as 

optimization methods but also are capable of finding good solutions within acceptable computation time. Thus, we 

develop hybrid approach to integrate fast heuristics into an optimization framework of a cut generation method (e.g., 

Barnhart et al., 1998; Wolsey, 1998). 

 

4. PROPOSED MODEL 

A very important characteristic of routing problems is the way in which transportation requests become available. In 

a static situation all requests are known at the time the routes have to be constructed. In a dynamic situation some of 

the requests are known at the time the routes have to be constructed and the other requests become available in real 

time during execution of the routes. We focus on the static stage. An optimization method may benefit from the 

presence of time constraints since the solution space may be much smaller. To prevent transportation requests from 

being served long before (or after) their desired delivery (or pickup) time, we can either construct closed time windows 

or take an objective function that penalizes deviations from the desired service time. In general, we can figure out two 

kind of objective functions related to multiple vehicle pickup and delivery problems: 

 Minimize the total time, distance or cost that all vehicles need to execute all the set of transportation requests.  

 Minimize the number of vehicles. This function is almost always used. Because drivers and vehicles are the 

most expensive parts in a system, minimizing the number of vehicles to serve all requests is usually the main 

objective. 

Our PDP model is focused on a continuous move strategy implementation. On this strategy attempts are made to 

match multiple truckload pickups and deliveries to one truck in sequential order such that the prior delivery is made 

before the next pickup in the sequence. The benefit of continuous moves derives from the overall reduction in empty 

haul distances. Careful planning can ensure that the relocation of a truck from the prior delivery location to the next 

pickup location will minimize the overall empty haul distances for the entire network. So, we focus our attention on 

finding optimal routes for the continuous move problem, using a large-scale mathematical model. A continuous move 

(i.e. c-move) trip occurs when two or more truckload trips are sequentially combined. That is, if trips Ti1,j1 and Ti2,j2  are 

combined, then a c-move trip will require as follows: 

 Deliver goods from origin i1 to destination j1. 

 Make an empty haul move to a new origin i2.  

 Pick up goods from origin i2 and deliver them to a final destination j2 and 

 Return to the initial origin i1. 

For each trip, we compute its total cost, which includes the summation of all costs including those associated with 

the empty hauls. Some assumptions are considered in our case. We consider only a daily operation. All trips are 

planned for one day of operation in order to enforce and simplify truck location requirements. In other words, all 

trucks starts the day at an origin i and then return to the same origin at the end of the day. Another assumption 

excludes stochastic and dynamic considerations. This is justifiable as the model that we propose is meant as a planning 

tool, not as an operational tool. We have chosen a hybrid MIP approach to solve our problem. The PDP-TWDS is 

formulated as a mixed integer linear program. We propose to solve the problem in three stages. The first stage 

constructs initials solutions at aggregate level relaxing some constraints on the original problem. The other two stages 

imposes time windows and dock service constraints respectively. 
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4.1 Relaxed Capacitated Vehicle Routing Problem (C-VRP) Model 

Here we assume different vehicles capacities that are initially located at different nodes (i.e. depots). At this first 

stage our model constructs initials solutions at aggregate level. Particularly, we relax time windows and dock service 

constraints. This means that transportation orders have no specific service time windows constraints to satisfy. The 

objective is to find an optimal cost solution that completes all the transportation workload orders at aggregate level 

taking in mind vehicle cubic capacity constraints, vehicle compatibility constraints and 24-hours of operation per 

vehicle per day constraints. The main output of this relaxed C-VRP model is to identify an optimal assignment of the 

vehicles to cover all the transportation orders. In transportation operation, the regular case is when we operate a single 

trailer with just one haul. However, our first C-VRP model considers the case when we decide to operate a route with 

a vehicle m1 grouped with another vehicle m2. As a result we obtain one new vehicle with a summed capacity. This is 

a double trailer case, in other words, a vehicle operating with two hauls. Thus, our C-VRP model includes identifying 

if one vehicle m1 should be grouped (hooked) to operate a route with another vehicle m2. We present our first stage 

C-VRP model as follows: 

 

Sets and parameters: 

A(i, j) = subset of compatible vehicles m that can be used on transportation lane (i, j) ∀ (i, j) ∈ V, where A(i, j) ⊆ M, 

m ∈ M 

Hk = quantity of cases of SKU k per cubic meter, ∀ k ∈ K 

K = set of different SKUS k including regular and returnable products, where k ∈ K 

M = set of vehicles (trailers), where m ∈ M 

N = set of nodes on the network (i.e. plants, distribution centers or customers), where i ∈ N 

P(i) = subset of vehicles located at node i, where P(i) ⊆ M and i ∈ N 

Qm = quantity of cubic meters on vehicle m, where m ∈ M 

R = set of transportation orders to satisfy of regular or returnable products from node i to node j, where r ∈ R 

TS = service time for single trailer configuration 

TF = service time for double trailer configuration   

STij = transportation time on arc (i, j) on single trailer , ∀ (i, j) ∈ V and i, j ∈ N 

FTij = transportation time on arc (i, j) on double trailer, ∀ (i, j) ∈ V and i, j ∈ N 

SCij = transportation cost on arc (i, j) on single trailer, ∀ (i, j) ∈ V and i, j ∈ N 

FCij = transportation cost on arc (i, j) on double trailer, ∀ (i, j) ∈ V and i, j ∈ N 

Dijk = planned demand to transport from node i to node j for SKU k, ∀ (i, j) ∈ V and (i, j, k) ∈ R 

IN(i)  = opening time at node i, ∀ i ∈ N  

CN(i)  = closing time at node i, ∀ i ∈ N  

IVm  = opening time of vehicle m, ∀ m ∈ M  

CVm  = closing time of vehicle m, ∀ m ∈ M  

UB = number of times for demand covering (upper bound). Volume of product covered in advance or excess. 

 

Decision variables: 

Wm1,m2  ⇒  = 1 if vehicle m1 is linked to vehicle m2; =0 otherwise, ∀ (m1, m2) ∈ P(i) 

Xij 
m1,m2 ≥ 0, integer ⇒ number of trips from node i to j using vehicle (m1, m2), ∀ (i, j) ∈ V, (m1, m2)∈ A(i, j)⊂ P(i)  

Fijk ≥ 0 ⇒ quantity of cases to transport from node i to j of SKU k, ∀ (i, j, k) ∈ R 

 

The C-VRP can be formulated as the following mixed integer model: 
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Objective function (1.1) is formulated to minimize the variable cost (i.e. distance) of vehicles that are needed to 

execute the set of transportation requests. This is taking in consideration transportation cost on single and double 

trailer operation. Alternatively we have another objective function (1.2) which is formulated to minimize the total 

number of vehicles required to execute the set of transportation orders. Constraints (1.3 - 1.4) assure that each vehicle 

can be assigned exclusively to a single or a double trailer operation only.  Constraints (1.5) restrict the maximum 

quantity of trips that a single trailer can perform on a 24 hours time horizon. Something similar applies on constraints 

(1.6) for a double trailer operation. Constraints (1.7) assure that the quantity of cubic meters used to transport SKU 

products from node i to node j is equal to the total cubic meters of available capacity considering single and double 

trailer operation. Constraints (1.8) correspond to balance flow constraints that assures that total transportation volume 

from node i to node j is sufficient to cover the total demand at each SKU level as is required. Constraint (1.9) is similar 

to (1.8) but this is used to restrict the maximum volume of product to transport from node i to node j as an upper 

bound. Finally, (1.10) corresponds to the balance flow constraints imposed at vehicle level. 

 

4.2 Pickup and Delivery Problem with Time Window Constraints (PDP-TW) Model 

As a result from the previous model we obtain the optimal assignment of the vehicles. That is, binary variable Wm1,m2  

identify which vehicles is going to operate a single trailer (i.e. with just one haul) and which others will operate on 

double trailer (i.e. a vehicle operating with two hauls). From here to the end, all double trailers will be modeled as one 

only vehicle with a summed capacity. Indeed, we can verify on the previous model that integer variable Xij 
m1,m2 

calculates the optimal quantity of trips required on each final vehicle and on each arc between origin nodes and 

destination nodes. Our next PDP-TW model is implemented in order to take advantage from the previous information. 

Thus, on this model we add time windows constraints. We model as follows: 

 

Added sets and parameters: 

L = set of stops on a given route  

Xij 
m = number of trips from node i to j using vehicle m, ∀ (i, j) ∈ V, m ∈ A(i, j) 

IN(i)  = opening time at node i , ∀ i ∈ N  

CN(i) = closing time at node i, ∀ i ∈ N  

IVm  = opening time of vehicle m, ∀ m ∈ M  

CVm  = closing time of vehicle m, ∀ m ∈ M  

TCij
m

 = transportation cost for transportation lane (i, j) on vehicle m, ∀ (i,j) ∈ V, m ∈ A(i, j)  

Zij
m

 = total transportation and service time for transportation lane (i, j) on vehicle m, ∀ (i, j) ∈ V, m ∈ A(i, j)  

 

Decision variables: 
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Yij 
ml  ⇒ = 1 if vehicle m is routed from node i to j on sequence l; = 0 otherwise. ∀ (i, j) ∈ V, m ∈ A(i, j), l ∈ L 

Tij 
ml ≥ 0 ⇒ arrival time at node j from node i on vehicle m at sequence l, ∀ (i, j) ∈ V, m ∈ A(i, j), l ∈ L 

 

The PDP-TW can be formulated as the following mixed integer model: 
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Expression (2.1) is formulated as a multi-term objective function. The first part of the function is used to minimize 

the total transportation variable cost of the vehicles required to execute all the set of transportation orders. The second 

part minimizes all the set of arrival times that corresponds for each individual trip (i,j,m). With this formulation we 

calculate the earliest arrival time for each trip. Constraints (2.2) assure that all the set of trips obtained on model 1 are 

fully covered on model 2. These constraints are imposed for each vehicle and for each pair of origin and destination 

nodes. Constraints (2.3) correspond to the balance flow constraints imposed at vehicle level. Constraints (2.4 - 2.5) are 

formulated for time windows constraints required on each node. Constraints (2.6 - 2.7) correspond to time windows 

formulation for each vehicle. Constraints (2.8) assures that each vehicle must depart from just one only origin node at 

each trip. Constraints (2.9 - 2.10) are formulated in order to calculate the arrival times for the entire set of trips 

considering all the nodes and all the vehicles. In other words, these constraints correspond to the time windows 

precedence for each trip and for each vehicle.  

 

4.3 Pickup and Delivery Problem with TW and Dock Service Constraints (PDP-TWDS) Model 

As a result from the previous PDP-TW model we obtain the optimal assignment of the vehicles considering vehicles 

capacity and time windows constraints as well. That is, binary variable Yij 
ml identify if a vehicle m is routed from node 

i to j on sequence l. This is the route sequence for each vehicle. At the same time, positive variable Tij 
ml, calculates the 

arrivals time at each node for all the vehicles. With this in mind, we can proceed now to apply dock service capacity 

constraints on our final model. Our previous model works as the master model. Then, the logic we apply here is to 

iteratively generate cuts in a Brach & Cut scheme. For that purpose we identify in the incumbent solution, at each 

arrival node and at each working hour, the subset of vehicles that are violating the dock service constraint. For that 

purpose we compare the quantity of vehicles that are being dispatched simultaneously at a given node and at a given 

hour versus the docks quantity that the node is capable to attend at a given hour. Then we add these cuts to the master 
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model. The generated cuts are kept in a pool of constraints that are managed separately of the rest of the cuts generated 

automatically by the B&C scheme. The procedure continues until is found the first optimal solution for the problem 

that does not violate the dock service capacity on all nodes and at each 24-hour planning day. We model as follows: 

 

Added sets and parameters: 

   = number of docks available for service at node j at working hour h, where j ∈ N, h ∈ {1, ..., 24}  

E = set of cases where vehicle α is violating the dock service constraint at node j at hour h    

OT = minimal offset time between arrivals of vehicles α and β at node j 

 (       )∈ E    if and only if   {

|    
       

   
|            

                                                
      *   + ∈   

 

 

Decision variables for dock service constraint at node j at hour h (e ∈ E):  

B+
e ≥ 0 ⇒ Case e  time difference between arrival of vehicle α and arrival of vehicle β to node j at hour 

h:   (       )∈ E 

B-
e ≥ 0 ⇒ Case e  time difference between arrival of vehicle β and arrival of vehicle α to node j at hour h: 

  (       )∈ E 

Ue ⇒ Case e  = 1, if vehicle α arrives before vehicle β to node j at hour h; = 0 otherwise, where e ∈ E 
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Constraints (3.1) deal with a set of deviational variables to calculate the offset time on the arrival times to node j for 

each combination of vehicles α and β. We impose these constraints for any combination of vehicles α and β that may 

be arriving at a given node and at the same time. As a consequence it might be exceeding dock service capacity at the 

location and thus some constraints would be required. Constraints (3.2) assure that the offset time for any given pair of 

vehicles α and β arriving at node j looking for dock service capacity must be at least of size OT (e.g. one hour). 

Constraints (3.3 – 3.4) correspond to upper bounds imposed for deviational variables. In our case we define 24 hours 

as the time frame horizon. As can be verified on the previous model, these constraints grow exponentially as the 

number of nodes and vehicles are large. Thus on the last model we add these constraints on an iterative scheme only as 

is required. We model a linear relaxation of the PDP-TW problem resulting in a master problem solved very efficiently 

by a MIP solver. On this stage we fully apply the time windows constraints but we relax the dock service capacity 

constraints. Thus, at each iteration an integer feasible solution is obtained for time windows constraints on all nodes 

and all vehicles. An iteration procedure is performed within the MIP solver framework to add dock capacity 

constraints as necessary. We found that our approach is capable of obtaining near-optimal solutions in acceptable 

computational times for real business instances around 160 vehicles and 500 transportation orders. 

 

5. COMPUTATIONAL RESULTS 

We present some results indicating the efficiency of our method for solving large scale instances. CPU configuration 

used in our implementation is Win X32, 2 Intel Cores at 1.4GHz. We implement our model on X-PRESS MIP Solver 

from FICOTM (i.e. Fair Isaac, formerly Dash Optimization). The first stage of our solution method corresponds to a 

Relaxed Capacitated Vehicle Routing Problem (C-VRP) model. On this stage we relax all the time window and dock 

service constraints. Instead, some side constraints at aggregate level are included in order to assure feasibility on the 

original problem. This heuristic stage works at aggregate level to create a network simplification for the original 

PDP-TWDS in order to reduce the search space. The basic idea of our heuristic is to identify a sub set of incumbent 

decision variables in such a way that transportation orders and vehicles are required to be compatible. However, the 

idea to include only a small percentage of the possible links as decision variables in the first stage MIP model is based 

not only on a geographic distance criterion but also on other compatibility issues. That is, we point out about 

compatibility between transportation orders and vehicles types, compatibility between transportation lanes and 
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vehicles types and compatibility between transportation nodes and vehicles types. Thus, this heuristic is very important 

to estimate the number of links (i.e. decision variables) necessary for each transportation lane and for each vehicle in 

order to assure feasibility for the original disaggregated problem. Thus, one of the main contributions of our work is to 

develop a model that is stable on input data in order to find a way to dismiss enough links to make the solution of the 

first aggregated MIP model very efficient. With this in mind, the first stage model can be solved more efficiently. This 

strategy reduces the search space because it decreases the number of possible solutions for transportation orders 

assignment to vehicles. This trade-off on optimality is going to be detailed on the next section. 

On the following, table 1 shows the optimal solutions that we find for our first stage model using different 

combinations on input values for parameters: (F1) quantity of vehicles to be considered for each transportation lane 

and (F2) quantity of transportation lanes to be considered for each vehicle. Basically these two heuristic parameters F1 

and F2 affect the matrix size of the decision variables and the complexity to be considered by our model at the first 

stage when feasible solutions are obtained at aggregate level. Particularly, table 1 shows the results obtained with an 

objective function implemented with equation (1.1). This objective function minimizes just the total transportation 

cost which is in fact a variable cost. As can be verified on the last column, the number of tractors or single hauls is not 

actually minimized when compared with table 2. 

From table 1 we can verify that with an appropriate setting on parameters F1 and F2, we can obtain good quality 

solutions in short computational times. However, the trade off we have to pay with this strategy is that we may have an 

over constrained solution space. By the other hand, when we set F1 = 40 and F2 = 40, our problem size is larger (see 

No. of binary variables). Thus, we can obtain better solutions but more time is required to solve the problem. Column 

“% of Gap to optimality” corresponds to the gap optimality expressed as a percentage when we compare the best MIP 

solution found on column # 6 versus the best bound obtained at any given computational time by our solver. Now on 

table 2, we present the results obtained with an objective function implemented with equation (1.2). This objective 

function minimizes the total number of tractors and single hauls (i.e. vehicles) that are required to cover the entire set 

of transportation orders.  

As we can verify on both tables 1 and 2, as more time is available we can improve our solutions. However as is 

expected, on table 2 we obtain better solutions on the number of vehicles than we have on table 1. Our empirical 

results show that this heuristic has no impact on the optimal solution for the original problem we will find afterwards 

on the next stage. From our business perspective, we believe that it makes sense to use the objective function (1.2) 

reported on table 2 instead of (1.1) because it reflects more closely the transportation cost. That is, the fixed operative 

cost is very depending on the number of trailers and trucks that are required to attend the set of transportation orders. 

Accordingly with the contract, the bottler company has to pay to the third party provider for the rental of each truck 

running at operation independently of the number of trips that each truck performs during the workday. Taking in 

mind this consideration, the best solution we find on table 1 and 2 for different values on parameters F1 and F2 

corresponds to the solution with 39 tractors only (71 single-hauls). Thus, with this solution obtained so far at aggregate 

level, we have an optimization around 34% when compared with the actual number of single-hauls in use and 27% 

when compared with the actual number of trucks on rental. Our challenge is to assure this optimization on the next 

model stage when time windows and dock capacity constraints are included. 

From this aggregated and relaxed solution we move to process the model for the next two stages. Indeed, it is 

important to consider that these two stages are actually implemented in just one single model. That is, the 2nd model is 

the master model and the 3rd model runs iteratively adding the cuts to consider dock service constraints only as 

necessary. Thus the 3rd model iteratively runs until we find a solution that fully satisfies all the dock service constraints. 

All the computational experiments we perform from here are done taking in consideration a value of 1% for our solver 

MIP optimality tolerance. This optimality tolerance is set in the solver engine in order to identify a true near-optimal 

solution for each instance tested. This optimality tolerance operates at each iteration within the cut generation strategy 

on the 3rd model.   

In order to effectively stress our model, we generate several instances using different values for dock service 

capacity that is available on each transportation node. Thus, as we have an instance with less available docks for service 

we generate a more difficult problem to solve and a larger computational time is expected to find a solution. We have 

34 physical different transportation nodes in total in our problem. Between each pair of transportation nodes (i.e. 

origin and destination) we may have several transportation orders to be attended with different time windows 

requirements. Thus, the number of transportation nodes that are considered at the model level is much larger. By the 

other hand, the number of docks required for service at each node depends mainly on the volume of transportation 

orders to attend inbound or outbound operations at each node. In our instances, the number of docks available for 

service at each node ranges from one only up to eight. On table 3 as follows we present the instances and some results 

we obtain. For description purposes we detail each different instance indicating the number of docks available for 

service on each node. That is, on the first 10 columns of the table we have the number of docks on each node. For 

example label “5..6” indicates the same given capacity on both nodes. “Total Docks” is the total number on docks on 

the entire instance considering all the transportation nodes. The next columns are “# ITERs” and “# CUTs”. The first 
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is the number of iterations and the second the number of constraints that are required on each instance by the MIP 

solver to converge on a feasible near-optimal solution. Next we have the solution time on seconds that is required for 

each instance. Column “Max.Docks” refers to the maximum number of transportation orders on any given iteration 

where dock service capacity is violated. Indeed, this maximum number is mostly reached on the first iteration(s). 

Column “Avg.Docks” is the average number of transportation orders where dock capacity is violated. Furthermore, 

this average is weighted by the length of computational time that the solver spends on each iteration to solve the 

incumbent dock constraints. The last column is a speed measure that indicates the quantity of dock constraints that are 

solved by unit of time (i.e. by second). 

We can verify on table 3 that in general, as we have a larger quantity of docks available for service, shorter is the 

number of iterations and constraints that are required to add on the cut generation stage. As a consequence of less 

iterations and constraints to add on the master problem, this means less solution time to solve the problem. 

Furthermore, a larger number on the transportation orders where dock service is violated (i.e. 15 th column) means a 

larger quantity of cuts required to solve the problem. Something different happens with the “Avg.Docks” indicator. 

This measure does not depend much on the number of available docks nor is correlated to the other indicators. In fact, 

this measure ranges from 2.4 up to 10.4 and 5.1 in average. For example 2.4 means that, during the computational time 

when the progress take place, the most of the time the solver was trying to solve 2.4 constraints in average where the 

dock capacity is violated. In other words, the most part of the time required to converge on a fully feasible solution, we 

have a cuasi-feasible solution with only 2.4 transportation orders that does not have any dock capacity available for 

service. This is just like the solver’s average backlog. Finally, for the efficiency indicator on the last column, as we have 

a more constrained instance (i.e. with less available docks), the quantity of dock constraints solved by second is 

reduced. On the following we present table 4 showing the same set of instances as on table 3 accordingly with the total 

docks available for service. On this table we focus on present some activity measures for the vehicles operation. 

The third column on table 4 corresponds to the second part of the objective function presented on equation (2.1). It 

is the total sum of the arrival times of all the vehicles used to attend the entire set of transportation orders. This 

indicator is very useful in order to estimate how much efficiency and time delays we have on the vehicles. As we have 

a more constrained instance (i.e. with less available docks), we have larger waiting times on the vehicles. The waiting 

time can occur on the origin or on the destination node. Either way, this delay on the vehicle has a negative impact on 

its efficiency and also on the finish time when each vehicle completes its route at the end of the working day. The 4th 

column on table 4 corresponds to the sum of all the finish times of the vehicles on each instance. Thus, if we divide the 

sum of all the vehicles finish times between the total of vehicles we obtain in column 5 the average finish time of the 

entire fleet. In according with the last idea, we have on the next column the number of vehicles that are running on or 

after the 22nd hour. From the bottler’s operation perspective, there are several reasons they would like to avoid these 

times on the vehicles. It is preferable that all the waiting times of a vehicle take place at the end of the working day. 

Indeed, this strategy would allow to the planning people to have a more clear status of the vehicles location for the next 

operation cycle. Thus, the last column of the table is in accordance with the idea of measure the length of time (i.e. a 

percentage) that the vehicle is waiting during its route and just before the last stop. We can verify on table 4 that as we 

have a more constrained instance (i.e. with less available docks), we have larger values for all the previous mentioned 

indicators. Indeed, we obtain a large negative correlation coefficient about 89% between the number of docks and the 

total sum of the vehicles arrival times. Similar correlation coefficients are obtained for the sum of the vehicles finish 

times and for the percentage of waiting time on the vehicles.  

On table 5 we present statistical distribution providing some evidence about how constrained is the dock capacity 

for each transportation node. As we have more cuts added on a transportation node, we have a clear indicator about 

how many vehicles asking for service are violating the dock service capacity (a bottleneck). This information is useful 

for the business. Top management can be advised to make some changes on infrastructure (e.g. open more docks) in 

order to assure transportation service. The last row of the table 5 corresponds to a calculated average for each indicator. 

Thus, for our instances we have solution times that range from 9 up to 378 seconds and 91 seconds in average. 

Furthermore, our cut generation strategy adds 108 constraints in average for each instance. Finally, we can verify on 

the next columns the average number of constraints that are added to the master problem for each transportation node. 

It would seem that the node # 1 is the one that has the larger volume of transportation orders and vehicles asking for 

service (24.2 cuts added in average). In a far distance second place we have the nodes # 4 and 14. However this 

assumption is not necessarily true, because this indicator is correlated with the actual number of docks available for 

service at each node. What we can conclude from this average measure is that the actual dock capacity at transportation 

nodes # 1, 4 and 14 is not well balanced according with the volume of transportation orders that are asking for 

inbound or outbound service. Thus, this is a clear and useful advice for the business management. 
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6. MODEL APPROACH CONTRIBUTION AND APPLICABILITY 

As can been seen in section 3, there are a lot of applications and approaches, each being slightly different from the 

other, requiring a different model. The solutions are case-specific, since each one of them has its own constraints and 

objectives, making it virtually impossible to create an algorithm that can be applied to all PDP applications. Rather, we 

present building blocks of a broad applicability. We can point out here that one of the features that the end-users ask 

for the model understanding results is the developing of a simple map where we can outline the entire transportation 

operation. That is, a so-called “table map” where we can verify the volume of transportation orders that require to be 

serviced at each node and at each hour of the day. For simplification, on table 6 we show a 24 hour timetabling just for 

some of the transportation nodes of our problem. Each value on the table means the number of outbound 

transportation services at each node and at each working hour. This “table-map” solution corresponds to the more 

constrained instance (i.e. with less available dock capacity) and operating with 39 tractors only (71 single-hauls) defined 

on the relaxed C-VRP model. This instance is good to show how the vehicles operation is stressed when dock capacity 

is not available or is scare. The last row of the table is the total number of outbound services for each node. This is a 

true indicator about the volume of operation at each node, for example see nodes # 1, 2, 4 and 14. By the other hand, 

the last column is the total number of outbound services that occur at each given hour of the day. It is easy to 

understand why the largest number of outbound services takes place at the very first hour of the day. Also, we can 

verify that on the last 3 hours of the working day we just have 13 services only on the entire operation. Thus, the main 

part of the vehicles finishes the operation before at an earlier time. From this very constrained instance we obtain a 

statistical distribution for the vehicle effective utilization. The minimum utilization is 72.9% and 92.8% in average for 

the entire fleet. We have 28 vehicles with at least 90% of utilization and 16 vehicles with at least 95%. 

In general, for PDP applications is very important to identify which criteria should be viewed as a (hard) constraints 

and which should be optimized. However, the model we present on this paper is flexible enough to cope with different 

combinations of objectives and constraints that are very common to find on typical PDP problems. The novelty of our 

model approach presented in this paper is the combination of three basic stages that interact in order to solve 

effectively the PDP-TWDS. Our three models are presented on section 4 and we can outline as follows: 

 A Relaxed Capacitated Vehicle Routing Problem (C-VRP) model. This heuristic stage works at aggregate level to 

create a network simplification for the original PDP-TWDS in order to reduce the search space. On this stage we relax 

all the time window and dock service constraints. Instead, some side constraints at aggregate level are included in order 

to assure feasibility on the original problem. Our empirical results show that this heuristic has no impact on the optimal 

solution we find afterwards on the disaggregated stage for the original PDP-TWDS when time windows and dock 

capacity constraints are fully included. 

 A Pickup and Delivery Problem with Time Window Constraints (PDP-TW) model. Typical vehicle capacity, 

precedence and time windows constraints are fully considered on this stage. A feasible near-optimal solution is 

obtained at each iteration assuming infinite dock service capacity. For objective function (2.1) there is no need to make 

a tradeoff between cost and time because the cost obtained before on (1.1) is fully satisfied on (2.1). Instead we focus 

on optimize the second part of the objective function (2.1) which accounts for the total sum of the arrival times of all 

the vehicles used to attend the entire set of transportation orders (see table 4). 

 A Pickup and Delivery Problem with TW and Dock Service Constraints (PDP-TWDS) model. Dock service 

constraints are included within an iterative cut strategy scheme. This heuristic is used on this stage to add constraints 

only as is required at each iteration. As a result we speed up the MIP search for a near-optimal solution. 

A main contribution of our work is the implementation of dock service constraints. Particularly our implementation 

is based on a cut generation strategy. Empirical results show the efficiency of these valid inequalities to constraint 

connected routes considering dock service constraints on each node. To the best of our knowledge, this is the first 

time that these valid constraints are implemented. Our implementation indicates that the considered model provides 

with an appropriate trade-off for the solution quality and computational time. The proposed model not only address 

the difficulties embedded in the common PDP applications but also some practical concerns about pre-defined 

and/or forbidden route assignments at the node and vehicle level. Pre-assigned or forbidden requirements arise from 

business issues like routing realignment. From the practical standpoint, the issue of routing realignment is as how the 

model could efficiently accommodate for changes on transportation orders additions or dropouts trying not to disrupt 

the previous design considerably. All these features are very important if we consider how easy this model could be 

extended to other cases.  

It is important to point out that our methodology presents a HMIP model that ensures time windows feasible 

solutions at each iteration. Thus, it is interesting to verify how rapidly our implementation can converge on 

cuasi-feasible solutions for dock service constraints (see table 3). However, a future research opportunity exists in 

order to prove the viability of this paradigm when gap optimality is required to confirm. Our computational results are 

only to give some evidence to our arguments. They are not intended to be an in–depth comparison of available 

methods for PDP. Finally, it is true the convenience for integrate our OR model into a GIS environment application in 



49 
Fabian: Hybrid MIP method for a Pickup and Delivery Problem with Time Windows and Dock Service Constraints 

IJOR Vol. 8, No. 1, 3656 (2011) 

order to complete a transportation planning framework. Clearly transportation routing design process cannot be 

completely automated, but GIS is an appropriate tool to help in this process. However, a pure GIS does not offer 

much support for the design and optimization of the vehicle routes. Therefore a hybrid combination of heuristics and 

MIP exact models for optimization are required. We believe that this kind of optimization featured applications will be 

the future trend of the GIS transportation industry. 

From practical business application standpoint, this operation research (OR) application was developed and 

implemented to optimize the transportation network between manufacturing plants and distribution centers. During 

the last years, the firm was interested in developing a better transportation & routing schedules. Indeed, this is the first 

OR application that has been implemented in the bottler company. It is important to point out that the overall results 

have been very positive. The firm’s top management recognize that features included on the OR model implemented 

were truly outstanding. The project was a major undertaking, requiring a great deal of thought and effort. The first 

plans for transportation routes suggested by the optimization model were implemented eight months ago. Throughout 

the ramp-up and launch of the project, these plans for distribution operation were analyzed and the company found to 

be an extremely viable idea. Sometime after, during the course of the project, has resulted in a significant increase in 

productivity and direct savings to the firm. We can list some of the benefits that the company has achieved within this 

project: 

 The firm identifies now a rational set of measures to target and balance on each truck resource. This results on an 

optimal fleet of trucks, drivers and quantity of warehouse workers for each plant and distribution center.  

 An increase on effectiveness on the planning process required to set up an efficient transportation & route 

schedules. The typical fully-manual planning process time was reduced from 6 hours to less than 20 minutes using the 

new OR application. This permitted to the company to fine its truck capacity by season on a dynamic basis. As a result 

the company achieves an optimal capacity to attend the demand on each territory with an optimization of 18 trucks. 

This represents a 27% reduction from the original quantity of trucks working at the Mexico’s operation. 

 Streamline truck capacity to align it to a new transportation strategy. The added throughput allows the firm to 

defer investments on trucks and hauls that have been originally allocated. As a result of our continuous move model, 

the new routes are more efficient so the total travel time decreased, improving the productivity of the truck drivers. 

Our model achieves to optimize from actual 120 available hauls down to 71 only. Accordingly with this productivity, 

the management decided to rationalize the number of available hauls on the firm. The save on investments for hauls 

was about 15% of the current fleet. 

 Identify & implement an optimal cost of service. This allowed the firm to set an optimal deliver frequency. This 

means less travel time between plants and depots and a 14% increase in volume delivered per route per day. 

Besides all these business benefits, the new OR model will allow the company to speed up some others inventory 

optimization initiatives which are of special interest among Coca Cola bottlers around the world. The proposed model 

approach can extend the basic problem to address different specific business rules or additional planning criterion. 

Overall, we have provided a very valuable tool for a more efficient transportation planning according to the company 

business requirements. Nowadays, our model is being used by the firm to obtain a business solution with significant 

benefits. 

 

7. CONCLUSIONS 

This paper has addressed the PDP-TWDS as a critical component of the operational transportation process. Many 

logistics problems found in the manufacturing and service industry can be modeled as a PDP-TWDS application. 

Along with the increasing use of geographical information systems, companies seek to improve their transportation 

networks in order to tap the full potential of possible cost reduction. Transportation problems have been widely 

studied in the operations research literature. Over the last decades extensive research has been dedicated to modeling 

aspects as well as optimization methods in the field of vehicle routing. Still, there are areas and sub-problems, yet, to be 

researched. Several different objectives and constraints in the transportation design process (i.e. continuous move 

strategy) are identified and discussed. In this paper, we considered a particular PDP application that is frequently 

encountered in the real-world logistics operations. Our PDP-TWDS problem incorporated a diversity of practical 

complexities. Among those, we have a heterogeneous vehicle fleet with different travel times, travel costs and capacity, 

order/vehicle compatibility constraints, and different start and end locations for vehicles. Instead of assuming that 

each vehicle becomes available at a one only central depot, we modeled as each vehicle is given a start location where 

it becomes available at a specific time of the day. Particularly, on our PDP-TWDS extension we add some constraints 

for dock capacity service at each node and at each hour of the day. 

PDP-TWDS is NP-hard since this is a generalization of the well-known PDP and VRP. Within OR various 

algorithmic approaches have been proposed, some based on integer linear programming, others on classical heuristics 

and, more recently, on some meta-heuristics. However, solving a real world PDP possesses a significant challenge for 

both researchers and practitioners. Real-world instances of this NP-hard combinatorial optimization problem are very 
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large, so exact methods have failed even for relatively medium-size instances. MIP models when are used to solve 

instances as described, require a strong computational effort in time. Indeed, a pure MIP strategy usually compromises 

its practical implementation in business applications. With a real world application from the service industry, we 

present a rich featured PDP-TWDS model. We include some extensions that are very common to some of the 

problems encountered in the industry. Because of the characteristics of this PDP application, it is challenging to solve 

it within a reasonable computational time based upon the concrete business requirement. Furthermore, field people 

who are going to deploy the solution of our PDP application may have to pay more attention to the feasibility of the 

solution in practice than a pure optimal solution in terms of mathematics. 

A particular emphasis is given to a business application case at Embotelladoras ARCA. One of the individual 

optimization problems arising here is the task to schedule the operation on a transportation network with several 

plants and distribution centers. In this case we aim to make an optimization over a full fleet of tractors vehicles. In 

particular, it is of interest to deal with large scale instances with a high presence of time windows constraints. Time 

windows constraints can be found on the nodes (i.e. plants, warehouses, etc) or on the vehicles as well. Thus, as can be 

verified, our PDP-TWDS considers the schedule of a large scale of vehicles simultaneously. As a result some real world 

difficulties arise for dock service capacity issues. In order to tackle these simultaneous and conflicting objectives, a 

hybrid MIP approach has been developed to accommodate to the particular business requirements. We present the 

components of the model and a step-by-step description of the solution procedure. We implement a three stage HMIP 

model. The last stage includes a cut generation strategy to add dock service capacity constraints on an iterative scheme 

only as is required. We believe that this is an important contribution of our work. Empirical results show the efficiency 

of these valid inequalities.  

Computational results for a real-world instance around 100 single-haul vehicles and 500 transportation orders are 

reported, showing the suitable of our model to provide good quality solutions. Given the current state of the art for the 

solution of vehicle routing problems with time windows, it seems fair to say that these are large instances. A Relaxed 

Capacitated Vehicle Routing Problem (C-VRP) model is used to find a solution at aggregate level. On this stage we 

relax all the time window and dock service constraints. Instead, some side constraints at aggregate level are included in 

order to assure feasibility on the original problem. With the solution obtained at aggregate level we reduce the number 

of vehicles required and as a consequence the complexity of the original problem. At this aggregated level of results, we 

report an optimization of 34% when compared with the actual number of single-hauls in use and 27% when compared 

with the actual number of trucks on rental. The empirical results show that our simplification C-VRP model has no 

impact on the optimal solution we find for the original problem on the PDP-TWDS stage when time windows and 

dock capacity constraints are fully included. Thus, optimization and economic benefits for the company are assured. 

We report on this work good quality solutions (optimality tolerance ≤ 1%) in short computational times (total solution 

time ≤ 10 minutes). In general, the performance of a method is difficult to compare. Clearly, the diversity of theoretical 

and practical problems is immense. Consequently, there are not too many papers working on the same problem. 

Constraints can be different, objective functions can be different. Another possible way to compare a method is in 

checking the problem size that can solve and the amount of computer time and space it needs. It is clear that future 

research should be done in order to statistically test our method. This issue will be overcome of the subsequent paper. 

However the results obtained so far, indicate that our model is robust to solve this hard problem, reaching good 

solutions in short computational times. 

We integrate our HMIP model into an advanced interactive tool based on a MAPINFOTM application. Thus, we 

achieve a practical functionality to the end-users. This GIS environment can be used in different contexts. At the 

operational level, it represents a valuable tool to quickly produce and deploy different solutions. At the tactical level it 

can be used to simulate alternative scenarios and evaluate the impact of changes in time windows on nodes and 

vehicles as well. It is important to point out the interest of the end users about how our model can easily take the 

already existing routes into account. Particularly, the model is ready prepared to consider any prescribed and forbidden 

vehicles routes. All these features can be extended for any case when some vehicle routing information is present at the 

beginning of the planning process. Thus, the company evaluates how our model efficiently accommodates for system 

changes like transportation orders additions or dropouts trying not to disrupt the previous routing design considerably. 

Finally, with respect to the literature on routing and scheduling problems, it is interesting to observe that PDP have 

received far less attention than VRP applications. However, time constraints play an even more prominent role in 

PDP-TW. Furthermore, assigning transportation orders to vehicles in PDP-TW is much more difficult than in 

VRP-TW. In VRP-TW, all the origins of the transportation orders are located at the depot. Therefore, transportation 

orders with geographically close destinations are likely to be served by the same vehicle. In the PDP-TW, 

geographically close destinations may have origins that are geographically far apart and we cannot conclude that they 

are likely to be served by the same vehicle. The current situation in freight transportation reflects the need for 

improved efficiency, as the traffic volume increases much faster than the road network grows. 
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Table 1 Aggregated-level solutions for the Relaxed C-VRP model. Objective function for minimize variable cost.  

(F1) # of Vehicles 

per Transp. Lane 

(F2) # of 

Transp. 

Lanes per 

Vehicle 

# of Binary 

Variables 

LP Solution Comp. 

Minutes 

Best MIP 

Solution 

% of GAP to 

optimal. 

# of Single 

Trailers 

# of Double 

Trailers 

#Tractors/ 

# Single hauls 

20 20 8,751 172,569 2 211,876 14.10% 11 45 56 / 101 

20 20   3 193,818 6.09% 9 41 50 / 91 

20 20   5 192,238 5.32% 9 40 49 / 89 

20 20   10 190,278 4.34% 9 39 48 / 87 

30 30 15,915 168,632 2 191,382 6.82% 9 37 46 / 83 

30 30   3 190,262 6.26% 9 37 46 / 83 

30 30   5 189,076 5.67% 9 38 47 / 85 

30 30   10 188,002 5.13% 9 38 47 / 85 

40 40 21,534 166,062 2 NA NA NA NA NA 

40 40   3 190,378 7.77% 10 43 53 / 96 

40 40   5 187,860 6.53% 9 37 46 / 83 

40 40   10 186,018 5.60% 9 38 47 / 85 

 

Table 2 Aggregated-level solutions for the Relaxed C-VRP model. Objective function for minimize No. of Vehicles. 

(F1) # of Vehicles 

per Transp. Lane 

(F2) # of Transp. 

Lanes per Vehicle 

Binary 

Variables 

Comput. 

Minutes 

% of 

GAP to 

optimal. 

# of Single 

Trailers 

# of Double 

Trailers 

# Tractors / 

# Single hauls 

20 20 8,754 3 21.89% 9 37 46 / 83 

20 20  5 19.92% 9 36 45 / 81 

20 20  10 17.86% 9 35 44 / 79 

30 30 15,915 3 31.03% 11 40 51 / 91 

30 30  5 20.55% 9 35 44 / 79 

30 30  10 17.40% 8 34 42 / 76 

40 40 21,534 3 25.99% 9 37 46 / 83 

40 40  5 25.98% 9 37 46 / 83 

40 40  10 17.01% 8 33 41 / 74 

40 40  20 7.58% 7 32 39 / 71 
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Table 3 Instances for the complete PDP-TWDS model. Available docks for service and efficiency measures. 

1 2 3 4 5..6 14 15 16..27 28 29..34 Total 

Docks 

# ITERs # CUTs Solution 

Time 

Max. Docks Avg. Docks Docks 

/Secs. 

8 6 4 4 4 3 3 2 3 2 75 6 40 13 21 4.7 1.58 

8 6 4 4 4 3 3 1 3 2 63 10 49 26 24 3.5 0.92 

7 6 4 4 4 3 3 1 3 2 62 8 60 28 25 4.6 0.89 

6 6 4 4 4 3 3 1 3 2 61 5 50 14 27 6.4 1.89 

6 5 4 4 4 3 3 1 3 2 60 9 55 28 28 3.9 1.00 

6 4 4 4 4 3 3 1 3 2 59 12 69 45 29 3.0 0.65 

6 3 4 4 4 3 3 1 3 2 58 4 62 9 32 10.4 3.66 

6 3 3 4 4 3 3 1 3 2 57 8 74 25 33 6.1 1.30 

6 3 2 4 4 3 3 1 3 2 56 7 65 23 34 5.4 1.51 

6 3 1 4 4 3 3 1 3 2 55 14 98 67 36 4.2 0.54 

6 3 1 3 4 3 3 1 3 2 54 12 102 118 39 2.4 0.33 

6 3 1 2 4 3 3 1 3 2 53 21 134 110 42 4.2 0.38 

6 3 1 2 3 3 3 1 3 2 51 18 137 98 45 5.0 0.46 

6 3 1 2 2 3 3 1 3 2 49 18 149 117 49 4.3 0.42 

6 3 1 2 2 2 3 1 3 2 48 12 147 86 55 6.8 0.64 

6 3 1 2 1 2 2 1 3 2 45 23 198 378 62 3.9 0.16 

6 3 1 2 1 2 1 1 2 2 43 20 225 236 66 6.0 0.28 

6 3 1 2 1 2 1 1 2 1 37 16 226 218 71 7.7 0.33 
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Table 4 Instances for the complete PDP-TWDS model. Activity measures for vehicles operation. 

Total Docks Solution Time in 

secs. 

Total Sum for 

Vehicles Time 

Vehicles Sum End 

Times  

Vehicles Average End 

Times  

# Vehicles with End 

Time > 22 

Vehicles  

 % of Wait. 

75 13 2,184.70 697.70 17.89 7 4.51% 

63 26 2,136.90 688.83 17.66 6 3.41% 

62 28 2,159.07 696.22 17.85 7 3.47% 

61 14 2,213.75 702.68 18.02 11 4.32% 

60 28 2,198.50 696.93 17.87 10 3.66% 

59 45 2,168.37 694.53 17.81 7 4.06% 

58 9 2,210.57 705.55 18.09 9 4.54% 

57 25 2,228.33 710.00 18.21 9 4.32% 

56 23 2,249.00 721.93 18.51 10 4.37% 

55 67 2,300.70 728.50 18.68 13 5.33% 

54 118 2,238.43 707.72 18.15 8 4.69% 

53 110 2,258.85 728.78 18.69 11 5.08% 

51 98 2,240.35 709.47 18.19 8 4.65% 

49 117 2,311.65 727.12 18.64 12 5.77% 

48 86 2,310.92 729.27 18.70 12 5.82% 

45 378 2,385.28 748.45 19.19 12 6.65% 

43 236 2,358.55 743.78 19.07 10 7.05% 

37 218 2,416.90 754.80 19.35 14 7.26% 
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Table 5 Instances for the complete PDP-TWDS model. Number of dock constraints added for each transportation node. 

Total 

Docks 

Sol. 

Time 

# of 

Cuts 

1 2 3 4 5 6 14 15 16 19 20 27 28 30 31 32 34 

75 13 40 15 0 0 7 3 1 7 2 0 0 0 1 3 0 1 0 0 

63 26 49 14 0 0 8 3 1 10 3 1 1 1 3 3 0 1 0 0 

62 28 60 19 1 0 7 3 1 15 3 2 1 1 3 3 0 1 0 0 

61 14 50 22 0 0 7 3 1 5 2 1 1 1 3 3 0 1 0 0 

60 28 55 21 1 0 7 3 2 9 1 2 1 1 3 3 0 1 0 0 

59 45 69 25 4 0 8 2 1 13 3 2 3 1 3 3 0 1 0 0 

58 9 62 22 9 0 7 2 1 8 3 1 1 1 3 3 0 1 0 0 

57 25 74 26 16 1 7 3 1 6 1 2 3 1 3 3 0 1 0 0 

56 23 65 22 11 2 6 2 1 9 2 1 1 1 3 3 0 1 0 0 

55 67 98 32 11 16 7 3 1 12 3 2 3 1 3 3 0 1 0 0 

54 118 102 27 13 18 12 2 2 12 3 2 3 1 3 3 0 1 0 0 

53 110 134 26 19 21 35 3 1 10 2 3 6 1 3 3 0 1 0 0 

51 98 137 27 19 19 33 5 3 15 1 2 5 1 3 3 0 1 0 0 

49 117 149 32 11 19 32 13 8 14 4 2 6 1 3 3 0 1 0 0 

48 86 147 25 10 18 29 14 8 28 1 3 4 1 3 2 0 1 0 0 

45 378 198 26 9 21 41 24 24 33 3 3 7 1 3 2 0 1 0 0 

43 236 225 26 13 19 35 24 23 31 32 2 6 1 3 9 0 1 0 0 

37 218 226 29 17 20 30 25 23 28 27 3 4 1 3 6 1 5 1 3 

54.8 91.1 107.8 24.2 9.1 9.7 17.7 7.6 5.7 14.7 5.3 1.9 3.1 0.9 2.9 3.4 0.1 1.2 0.1 0.2 
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Table 6 Timetabling solution for the more constrained instance with the least available dock capacity 

Node # 1 2 3 4 5 6 14 15 16 19 20 27 28 30 31 32 34 Total 

0 6 3  2 1 1            13 

1 4 1  1 1 1            8 

2 2 2 1 1 1 1 1 1          10 

3 2 2 1 1 1 1 1 1          10 

4 3  1 2 1 1 1 1     1     11 

5 2 1 1 1    1     1     7 

6 2  1 2    1  1     1 1 1 10 

7 1  1 1   2  1    2  1  1 10 

8 2 2  2   2      2   1  11 

9 2 1 1 2 1  1 1       1   10 

10 3   1 1 1 1           7 

11 1 3 1               5 

12 3 2   1 1 2    1      1 11 

13 1 2  2 1 1 1 1     1     10 

14 3 2  1 1 1 1      1     10 

15 3  1  1 1 2   1   1    1 11 

16 2  1   1 1 1       1   7 

17 2 1  1  1 1      1 1    8 

18 2 1  1   1  1 1     1  1 9 

19 1 1  1   2 1 1   1 1 1 1   11 

20 1      2 1  1  1      6 

21 4  1       1  1      7 

22 3       1          4 

23  1     1 1          3 

24  1  1   2 1   1       6 

Total 55 26 11 23 11 12 25 13 3 5 2 3 11 2 6 2 5  

 

 


