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AbstractThis study aims to develop a multi-period distribution system design model that provides an integrated 

view of the various costs, service quality and budget concerns within the planning horizon, as well as computationally 

feasible methods for obtaining solutions in realistic situations. The key design decisions considered in each period are: 

the number and location of distribution centers in the system and the routing of shipments between distribution 

centers and customers. Multi-period distribution systems design requires an integrated view of facility costs and 

transportation costs, service quality as well as budget constraints within the planning horizon.  A 

genetic-algorithm-based approach is proposed as the solution procedure to find the optimal sequence for locating 

distribution centers over the planning horizon.  The quality of solutions to test problems is analyzed and compared 

with the optimal solutions obtained from the commercial software Lingo 11.0. 
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1. INTRODUCTION 

The purpose of this study is to formulate and analyze a facility location decision model for multi-period distribution 

system design with budget and service level considerations.  The key design decisions considered in each period are: 

the number and location of distribution centers (DC’s) in the system and the routing of shipments between DC’s and 

customers. The design decisions are made with concerns for the total logistic costs, service level (measured by 

coverage of retail outlets: the fraction of total demand at retail outlets that are within some specified time or distance of 

the nearest DC) and budgets available for locating DC’s in each period. Retail outlet locations are assumed known and 

fixed, with varied (time-dependent) demand.  The concerns in this model are long-term decisions on facility 

investments and the selection of transportation channels in each period. 

Logistics costs (including facility costs and transportation costs) and customer responsiveness are important in 

designing a distribution system. One key question in designing a distribution system is locating DC’s. However, there 

is often a trade-off between the two objectives in determining the number of DC’s and their locations. A network of 

fewer DC’s allows lower facility costs but provides lower coverage of retail demand. In addition, transportation costs 

may be higher because shipping distances become longer.   Thus, locating DC’s creates the opportunity to shift the 

balance among the fixed facility costs, the transportation costs and the service level.  

Facility location decisions are strategic in nature. Since the facility investment required to construct facilities is 

usually large, facilities are expected to serve over a planning horizon. Usually, the demand, the unit transportation cost 

and the cost of constructing DC’s may change over time. In addition, we may not have enough money to construct all 

the planned DC’s simultaneously. Thus, it is more realistic to consider budget constraints in locating DC’s and 

time-dependent cost parameters over the planning horizon while designing a distribution system. The decisions not 

only involve selecting robust DC locations to efficiently serve changing demands over time, but also when to locate 

DC’s to achieve the required service level within budget constraints over the planning horizon.  
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 The optimal design of a multi-period distribution system design requires an integrated view of facility costs, 

transportation costs, service levels and budget limits in each period. The purpose of this paper is to create a formal 

model that provides such an integrated view and to develop methods for obtaining solutions for the design variables in 

practical situations.  

The remainder of this paper is organized as follows. In Section 2, we review the relevant literature. In Section 3, we 

present a mathematical programming formulation of the problem. The solution procedure is presented in Section 4. In 

Section 5, we describe an illustrative example and discuss the solution quality of the solution procedure. In Section 6, 

we draw some conclusions. 

 

2. LITERATURE REVIEW 

The research draws on literature in four key areas: uncapacitated facility location models (UFLP), maximal covering 

models, dynamic facility location models and applications of genetic algorithms to location problems. The 

uncapacitated facility model and maximal covering are both important in static facility location. Both models have 

been extensively used in practice and numerous algorithms have been proposed for their solution. Mirchandani and 

Francis (1990) and Daskin (1995) present surveys of application and solution procedures for both the UFLP and the 

maximal covering location model. The UFLP identifies the subset of potential facility locations that minimizes the cost 

of serving a set of demand locations. Whereas the UFLP focuses on costs, the maximal covering location problem 

focuses on service responsiveness. A demand location is “covered” if a facility is located within a given distance of the 

location (as a surrogate of service responsiveness). The maximal covering problem identifies P locations that maximize 

the amount of covered demand. There is often an inherent trade-off between cost and service responsiveness. That is, 

the lowest solution may provide poor service responsiveness and the maximal coverage solution may be expensive. 

Therefore, in many real world facility location problems it is important to identify a solution that represents an 

acceptable trade-off between these two objectives (Bhaskaran and Turnquist, 1990; Nozick, 2001). 

Whereas static facility location models ignore time, dynamic facility location models incorporate the effect of the 

future time dimension. Since the pioneering work of Ballou (1968), researchers have been interested in dynamic facility 

location problems. Current et al. (1997) define two types of dynamic models: implicitly dynamic and explicitly dynamic 

models. In implicitly dynamic models, facilities are assumed to be opened in one period and then remain open over the 

planning horizon. By contrast, facilities will be opened and possibly closed over the horizon in explicitly dynamic 

models. Examples of implicitly dynamic models include Drezner (1995) and Hinojosa et al. (2000). Examples of 

explicitly dynamic models include Sweeney et al. (1976), Van Roy and Erlenkotter (1982), and Melachrinoudis et al. 

(2000). Mirchandani and Francis (1990), Current et al. (1997), and Owen and Daskin (1998) present reviews of 

dynamic facility location problems. 

Genetic algorithms (GAs) were first developed by Holland (1975). Since then, GAs have been implemented in a 

wide variety of application areas, especially in combinatorial optimization problems. The basic idea of GAs is based on 

the mechanics of natural selection in biological systems. GAs use a structured but randomized way to use the 

information provided by existing solutions to seeking better solutions. A simple GA consists of three operators: 

reproduction, crossover and mutation that reflect nature’s evolutionary process (Goldberg, 1989). However, 

applications of GAs to location problems have been relatively few. Applications of GAs to the location problems 

range from the p-median problem (Hostage and Goodchild, 1986, and Alp et al., 2003), to the set covering problem 

(Beasley and Chu, 1996), to the hub location problem (Topcuoglu et al., 2005), and to the facility location problem 

(Houck et al., 1996 and Jaramillo et al., 2002). A notable study that has applied GAs to solve the dynamic facility 

location problem is that by Ko and Evans (2007).  Since there is relatively little literature published on the application 

of GAs to the dynamic facility location problems, there is all the more reason to apply GAs to the multi-period 

distribution system design problem. 

 

3. PROBLEM DEFINITION 

The problem can be summarized as follows. Given a set of potential distribution centers’ locations and retail outlets 

with specific demand processes in each period, we would like to know where to locate distribution centers and the 

shipments of finished goods from each distribution center to each retail outlet in each period to ensure the specified 

service level within budget constraints and at the minimum total logistic cost over the planning horizon. 

 

3.1 Model Formulation 

We define the following subscripts, sets, decision variables and input parameters. 

 Subscripts and sets: 

 d  D denotes the distribution centers (DC’ s). 
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 r  R denotes the retailer outlets.  

 t  T denotes the time periods within the planning horizon. 

 Decision variables: 

 
t

drX  equals 1 if DC d is opened at the beginning of time period t and o otherwise. 

 
t

drZ  is the volume of the product to be transported from DC d to retailer r in time period t. 

 Input parameters: 

 drl  is the distance from DC d to retailer r. 

 
t

dr  is the per-mile cost to ship a unit of product from DC d to retailer r.  

 
t

r  is the demand at retailer r in time period t. 

 
t

dF  is the fixed cost of opening DC d at the beginning of time period t. 

 
t  is the budget limit allocated to opening DC’s in time period t. 

 
t

drq  equals 1 if a DC located at candidate site d can not cover demand at retailer r in the time period t and 

0 otherwise. 

 
t  is the unit penalty cost for uncovered demand in time period t. 

 

Based on this notation, we can develop the following mathematical formulation. 

t T

Min ( )t t t t t t t

dr dr dr d d dr dr

d D r R d D d D r R
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drZ d D r R t T      
              (5) 

 0,1 ,t

dX d D t T    
               (6) 

 

The objective is to minimize the sum of transportation costs, facility costs and the penalty costs for uncovered 

demand in each period over the planning horizon. Constraints (2) ensure that facility investment in each time period 

can not exceed the budget available. Constraints (3) ensure that all the demand at retailers is satisfied in each time 

period. Constraints (4) ensure that DC’s that are still closed at the beginning of each time period can not transport 

product to retailers. Constraints (5) ensure that the flow variables are nonnegative. Constraints (6) are an integral 

requirement of the location variables.  

Unfortunately, an exact solution of this formulation is not computationally tractable. The key difficulties lie in the 

number of location variables which is the dimension of the static problem multiplied by the time periods.  Since the 

related single-period UFLP is an NP-hard problem (Cornuejols et al., 1990) and the formulation provided above is at 

least as computationally complex as UFLP, we are forced to turn to heuristic solution procedures. 

 

4. SOLUTION PROCEDURE 

The solution procedure developed is a genetic algorithm heuristic for simultaneously finding the optimal system 

configurations over the planning horizon. The GA’s solution procedure employed is simply as follows: 

Generate initial population randomly 

   DO WHILE stooping criteria not satisfied 

 DO GA’s operator WHILE new population not yet generated 

 Reproduction: select the parents from the current population via roulette wheel selection for mating 

 Crossover: first clone the chromosomes of the parents to the offspring and then exchange partial chromosomes 

  Mutation: mutate the chromosomes of the offspring  

 END DO  
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   END DO 

Report the best string as the final solution 

 

4.1 String Encoding 

Each chromosome within the GA’s population represents a possible solution to the dynamic distribution systems 

design problem. In this problem, a chromosome consists of two strings as shown in Fig. 1. The first string represents 

the sequence of distribution centers to open, and the second string represents how many distribution centers are to be 

opened in each planning period. Putting the information provided by the two strings together, we can know how many 

DC’s we need to open in each period. For example, the first string indicates that the sequence of distribution centers to 

be opened is at candidate sites 7, 2, 1, 5, 4, 3, 9, 4, 6, 10, 8 in that order.  The second string means that we open two 

DC’s in the first period and then two DC’s in the second period and one in the third period, respectively. Therefore, 

the chromosome indicates that we locate two DC’s at candidate sites 7 and 2 in the first period, two DC’s at candidate 

sites 1 and 5 in the second period, and one DC at candidate site 4. 

 

First String: 7  2  1 5  4  3  9  4  6  10  8 

 
                             Second String:  2  2   1  0 

Figure 1. A chromosome represents a solution of the problem 

 

4.2 Calculation of Fitness Function 

Because this problem is a minimization problem, we can not directly use the value of the objective function as a 

fitness measure of the solutions. Therefore, we need to map the objective function to a fitness function through the 

following transformation. The value of a fitness function for a chromosome is the value of the objective function of 

the worst solution in the current generation minus that of the corresponding solution. 

 

4.3 Initial Population and the GA’s Operators 

The initial population is randomly generated as follows. The first string is a random permutation of all potential DC 

sites. The second string consists of a series of numbers representing the number of DC’s to open in each period over 

the planning horizon. The number of DC’s to open in each period is randomly picked up from zero to the maximal 

number of DC’s allowed to open within the budget limit in that period. The two procedures are repeated until the 

specified population size is met. 

The initial population is randomly generated. The GA’s operators are used to select parent strings and to generate 

the next generation. The parents are selected via roulette wheel selection which allows the fitter individual strings to 

have a higher chance of being selected as a parent string to the mating pool. The idea behind this method is that each 

current string in the population has a roulette wheel slot size in proportion to its fitness. Selecting a string of a 

population to be a parent can be viewed as a spin of the wheel with the winning string being the one in whose slot the 

spinner stops.  It is defined as follows: 

1. Sum up the fitness over all individuals in the current population 

2. Calculate the percentage of the population’s total fitness for each individual 

3. Select an individual as a parent based on the percentage of the population’s total fitness 

Since each chromosome is encoded as a binary string, we simply use a single point crossover and simple mutation 

that flips a single bit with a low probability. The algorithm terminates when it reaches the maximum number of 

generations. 

 

5. ILLUSTRATIVE EXAMPLE 

We demonstrate our overall algorithm on a small example excerpted from Daskin (1995). There are fifty retailer 

outlet locations and each is considered to be a potential DC location. The fifty retailer outlets are some state capitals 

plus some other large cities. The locations of the retail outlets and the average retail demand over three planning 

periods are shown in Figure 2 where the size of circle represents the volume of demand. The delivery cost from DC’s 

to retailers is assumed to be $0.6 per unit-mile. The construction cost of a DC is estimated to be $10 million and the 

budget available for constructing DC’s is $30 million in each period. Finally we assume that the coverage distance (for 

service quality requirements) is 400 miles and the uncovered penalty cost is $1,600 per unit. 

We implement the algorithm in MATLAB on a Pentium IV 1200 MHz PC with the following parameters: 

population size = 50, crossover rate =1.0, mutation rate =0.1 and the number of generations =1000. Figure 3 shows 
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the optimal sequence of locating DC’s. In the first period, we locate three DC’s in Los Angeles, CA; St. Louis, MO; and 

Trenton, NJ. We then locate three DC’s in Jacksonville, FL; Houston, DA; and Portland, OR in the second period and 

three DC’s in Chicago, IL; Phoenix, AZ; and Wichita, KS, respectively.  

In order to investigate the solution quality of the solution procedure, four additional test problems are created which 

are similar to the illustrative example, but with different demand patterns, DC construction costs and uncovered 

demand penalty costs. For the illustrative example and the four additional test problems, it is possible to solve the 

problems optimally with the optimization solver LINGO 11.0. Table 1 compares the solution from the procedure with 

the optimal solution solved by LINGO 11.0. Notice that for all test problems the solution procedure identifies the 

optimal solution at least 1 time out of ten trials and within 4% of the optimum on average. Computationally, the 

solution procedure is quite good and holds substantial promise for the solution of the large problem. 

 

Figure 2. Location of sites for example problem 

 

 

Figure 3. Location of open DC’s in each period 

 

Table 1.  Solution Quality 

 
Test 

Problem 

 
Optimal 
Solution 

Solution Procedure 

 
Average 

 
Best Found 

 
Worst Found 

Time Optimal 
Found 

Example 304.0 314.7 304.0 329.5 4 

Problem 1 158.5 161.0 158.5 167.4 5 

Problem 2 540.9 562.4 540.9 593.0 1 

Problem 3 209.8 210.5 209.8 212.0 7 

Problem 4 494.3 507.1 494.3 520.3 2 
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6. CONCLUSIONS 

Multi-period distribution system design requires an integrated view of facility costs, transportation costs, service 

quality as well as budget constraints within the planning horizon. This paper develops a model that provides an 

integrated view of various costs, service quality and budget concerns, as well as a computationally feasible solution 

method for obtaining a solution in realistic situations. The solution procedure developed is a genetic algorithm 

approach for finding the optimal sequence of system configurations. In order to evaluate the quality of solution 

produced by the procedure, a series of test problems is solved. For all the test problems, the solution procedure 

identifies the optimal solution at least 1 time out of ten trials and identifies solutions within a 4% optimum on average. 

Computationally, the procedure appears to produce very good solutions, and it holds significant promise for the 

solution to large problems.  

Further enhancements would be useful in at least the following directions. The current structure of the system under 

study only consists of two-echelons: distribution centers and retail outlets. A more general structure of system should 

include at least one more echelon: production plants. Second, few dynamic facility location models have found 

practical applications. It might therefore be useful to undertake a real-world case study to demonstrate the usefulness 

of the multi-period distribution design model.  
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