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AbstractIn this paper, we propose a Markov Decision Process model for an empty repositioning problem in a 
two-port system. We consider two cases. The first case is the offline case, where demand information is assumed as a 
random variable with known distribution. The second case is online case where demand information is partially known. 
In both cases, we figure out the optimal controlling policies. The second case enables the possibility to conduct an 
online optimization taking the advantages of real-time information. 
KeywordsEmpty container repositioning, markov decision process. 
 
 
1.  INTRODUCTION 

Shipping industry is an old and traditional industry but it still carries around 90%’s international trade. Without 
shipping, the import and export of goods in the modern world would be impossible or much more expensive. In a 
flatter world, consumers enjoy the benefits of globalization, containerization and competing freight costs. 

Liner shipping industry is one of the most capital intensive industries. Besides ship, container is an important asset 
category. Ocean carriers currently spend almost 100 billion dollars per year on operating container assets, and industry 
analysts estimate that approximately 16 billion of that is directly attributable to the total cost of repositioning empty 
containers. Empty repositioning generates no profits directly but has potential to meet future demands. Properly 
repositioning empty containers can improve the container assets' utilization and increase carriers' revenues, especially 
in imbalanced lines. Trade imbalance initiates repositioning empties: it is not unusual today for entire ships to be 
chartered to shift empties from surplus to demand locations. The trend of container flow imbalances in the main 
trades seems increasing, especially in the transpacific and Asia/Europe trades, as Table 1 shows. Such a trend 
highlights the empty container repositioning problem. It is still one of the most important managerial problems faced 
by ocean carriers.  

 
Table 1. Container trade flow volumes of east/west axis (unit: 1000 TEU) 

 
Year Transpacific N. Europe-Far 

East 
Transatlantic Mediterranean- 

Far East 
Mediterranean  
North America 

2000 3,436 1,399 585 650 454 
2001 3,698 1,253 583 655 527 
2002 4,867 1,402 637 715 574 
2003 5,167 1,955 626 951 527 
2004 5,723 2,279 674 1,119 554 
 
Consider a shipping line which visits a fixed set of ports {1, 2,..., }T∏ = . As a common practice, the vessel will visit 

those ports in a given and fixed sequence. Without loss of generality, we assume the sequence is 1, 2, .., n. In our 
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problem, we also consider the return trip which covers all ports and they are visited in a reversed sequence of the 
forward trip. The forward trip and return trip together form a round-trip. Figure 1 illustrates a fixed forward trip 
covering several ports from Asian to America. 
 

 

Figure 1. One shipping line covering multiple ports. (from www.apl.com) 

 
In this paper, we consider a special case: A Two-Port system. In such a system, the shipping line travels between two 

ports back and forth. This system can be used to model the short-voyage shipping lines which cover only two ports. 
Such short-voyage shipping lines can be found in Pearl Delta River region where the containers are transported from 
Chinese factories via inland ports such as Fo Shan or Zhao Qin ports to the big port such as Hong Kong or Shenzhen 
ports. The system may be also used to perform a macro-economic analysis as well if we aggregate the ports in one 
region (like US) as a single port and aggregate the ports in another region (like China) as a single port. Since the 
demands are uncertain, the shipping line is concerned with how to control the amount of empty containers at those 
ports to deal with the uncertainty. The objective is to minimize the total costs including the leasing costs, holding costs 
and transportation costs. In this study, we formulate it as a stochastic dynamic program and we find that 
threshold-type optimal policy exists when the demands of two ports are not too imbalanced. The managerial insights 
from this model can supply some guidelines for the industry.  

In this paper, we consider offline and online models. In the offline model, we interpret the demand of some port 
accumulated in the whole round trip can be interpreted as a random variable and the partially available information is 
ignored. In the online model, partially available information is explicitly considered. This enables the possibility of 
updating the information in a real-time fashion. In both models, we discover the structures of optimal policies.  

The remainder of this paper is organized as follows: Section 2 introduces the literature review. Section 3 describes 
the mathematical model. Section 4 and Section 5 provides the analysis for offline and online models respectively. 
Section 6 concludes this paper.  
 
2.  LITERATURE REVIEW 

In our work, we consider the operational planning for the ocean transportation of empty containers so as to balance 
the supply and demand of empty containers at ports. A lot of research has been done in developing optimal or 
near-to-optimal policies for container fleet management. The problem can be formulated as a dynamic fleet 
management if we regard an empty container as a piece of equipment. Crainic et al. (1993) propose both deterministic 
and stochastic network models for the in-land transportation of empty containers. Cheung and Chen (1998) proposes 
a two-stage stochastic network model and solves it by stochastic quasi-gradient method (SQG) numerically. This 
approach is based on a general network without assuming the topological structure of the maritime routes. However, 
that model assumes that the demand for empty container at each port is aggregated. In practice, the demand can be 
specified by an origin and destination pair. Variants of this model can be found in Jordan and Turnquist (1983); 
Cheung and Chen (1998); Crainic et al. (1993); Cheung and Powell (1996); Kochel et al. (2003). These models are 
usually solved by mathematical programming techniques such as mixed integer programming, stochastic programming, 
etc. However, mathematical programming models have on-line computation communication and data requirements. 
Moreover, the underlying logic of such models is hidden from the terminal managers who are responsible for fleet 
management (Du and Hall (1997)). 

There is another modeling perspective: reusable inventory repositioning problem. Li et al. (2004) developed a 
two-level threshold policy to manage empty containers in a single port by assuming both import and export containers 
at the port are aggregated random variables. They showed that such threshold control policy is optimal for both finite 
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and infinite horizon problems. Li et al. (2007) further showed that the threshold control policy is ε-optimal in 
multi-ports case. Again, the import and export containers at each port are aggregated. 

Du and Hall (1997) used a threshold policy to redistribute empty equipment in a hub-and-spoke network. A 
decomposition approach was developed to find the optimal threshold values and fleet size subject to stock-out 
probability constraints. Song (2005) proved that optimal empty repositioning policy is of threshold control structure in 
two-depot service systems with the assumptions of exponentially distributed repositioning times and Poisson demand 
arrivals for continuous or periodic-review schemes. The work was further extended to a hub-and-spoke transportation 
system through a dynamic decomposition procedure Song and Carter (2008). They tested the threshold policy in a 
cyclic route numerically Song and Dong (2008), In this paper, we consider the empty container management from an 
ocean carrier's perspective. This perspective is same as Cheung and Chen (1998). However, different from Cheung and 
Chen (1998), Li et al. (2004, 2007), the demand at each port is not aggregate but explicitly associated with 
origin-destination pairs. Also, we relax the assumption that the repositioning times follow exponentially distributions 
and the demands are Poisson distributed as Song (2005). 

Our research is particularly interested to the demand model. We consider two demand models. In the first one, we 
interpret the uncertain demand as a random variable and ignore partially available information. In the second one, we 
interpret the uncertain demand as a random variable with partially available information. We call the first as offline 
model and the second online model. Literatures rarely consider online model for this problem.  
 
3.  MATHEMATICAL ANALYSIS：OFFLINE MODEL 

A shipping line provides service for a cyclic route according to a pre-determined timetable. A customer demand is 
defined as a transportation requirement of moving containers from the origin port to the destination port. Empty 
containers are required to satisfy the customer demand, and once the demand is satisfied, it will generate laden 
containers. The containers are assumed of the same size (i.e.20-ft unit). The vessel, whose capacity is V, can pick up or 
drop off containers at ports. 

In this problem, we need to make a sequence of decisions in a given planning horizon which consists of N round 
trips. Each round trip can be treated as a stage. Let us assume that the time of shipping from one port to the other is 
one period.  

As shipping industry is very competitive, customers are not willing to wait for the shipping line if it cannot satisfy 
them at the desired trip. Therefore we assume the unsatisfied demands are lost. With this assumption, each port only 
needs to consider the accumulated demand between two consecutive visits. Note that the decision of updating the 
state of port 1 has to be made just at the time instant when the vessel departs from port 2 and before it arrives at port 
1. As the accumulated demand from last visit to port 1 to the coming visit is only partially known, here for 
simplification, we assume it is a random variable i

tD  whose definition is given as follows, 
i
tD :  The accumulated demand at port i from the t-1 visit to the t visit. 

We can define the system state as,  
i
tx : The total number of available carrier-owned empty containers at port i when the vessel arrives at it.  

When the vessel arrives at port i, the following events will happen sequentially (shown in Figure 2): 
 
1. Unload the laden containers which are designated at port i. 
2. The demand at port i, i

tD  is realized as i
td . 

3. The laden containers are emptied and available for re-use. 
4. If the amount of demand is less than i

tx , they will be completely fulfilled by these empty containers. Then the 
carrier can determine the amount of empty containers, to be lifted on the vessel. If the demand is more than i

tx , 
the carrier should satisfy all the demand.  

5. Load the laden and empty containers (if there are) to the vessel. 
6. The vessel leaves port i. 
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Figure 2. Sequence of events.  

 
We assume that the leased containers can be returned at any port and the leasing cost is proportional with the leasing 

time. In shipping industry, international leasing companies usually conduct business covering different ports around 
the world. It is a common practice that one ocean carrier leases an amount of empty containers from some port i and 
lease off those containers at the destinations. Considering that the international leasing companies would like to get 
their containers back for further leasing and the ocean carrier is willing to lease off unnecessary leased containers 
immediately, this assumption is quite reasonable. Furthermore, if the ocean carrier would like to hold those leased 
containers for further utilization, she can lease off them and then lease on some. In this way, we only need to take care 
of the management of carrier-owned empty containers. 

 

 
Figure 3. Offline Model: Ignore partially available demand information 

 
We further define the system parameters: 

ic :  The cost of shipping one empty container to port i. 
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ih :  The holding cost of one empty container at port i. 

ip : The penalty cost for shortage at port i. 

iF :  The density function of the distribution of demand 

β :  The discounted factor  
 
The holding and shortage costs for both ports at each period t can be denoted as 

( ) ( ) ( )t t t
i i i i iL x p E D x h E x D+ += − + −  

It is well known that ( )t
iL x  are convex with x, given i and x. 

 
For stage t, let us define the optimal function for port 1 as ( )tG x  and the optimal function for port 2 as ( )tJ x . The 
optimality equations can be stated as follows, 

1

1

1 1 1 1 1

2 2 2 2 1 2

( ) min [ ( ) ( ) ( ( min( , )))]

( ) min [ ( ) ( ) ( ( min( , )))]

t tx y V

t tx y V

G x c y x L y E J V y y D

J x c y x L y E G V y y D

β

β
≤ ≤

+≤ ≤

= − + + − +

= − + + − +
 

Explanation: The decision epoch for 1( )tG x  is the time point right after port 2 has all laden containers to be unloaded 
at port 1 in round-trip t-1. According to the definition, 1x consists of two parts. One is the remained empty container 
since round-trip t-1 at port 1, and the other is the laden containers to be unloaded at port 1. Therefore, 1y x−  is the 
number of empty containers to be shipped from port 2 to port 1. The term 1 1( )c y x−  represents the empty 
repositioning cost. The term 1( )L y  represents the expected total shortage and holding cost at port 1. Once the vessel 
arrives at port 1, the demand at port 1, denoted by 1

tD , is realized. It is free to use carrier-owned containers to satisfy 
the demand at port 2. If there are not enough empty containers to satisfy the demand, we have to lease from other 
companies, paying a much higher cost, the amount of leased containers is 1max(0, )tD y− . Here we first assume that 
the vessel has infinite capacity. Under this assumption, the number of full-loaded self-owned containers to be shipped 
to port 2 is 1min( , )tD y . Therefore, the total number of available empty carrier-owned containers, namely the state, in 
port 2 will be 1min( , )tV y D y− +  (Note there are V y−  empty containers remained in port 2). So the decision of 
shipping empty containers to port 1 is equivalent to update the state of port 1. Such decision pays additional shipping 
costs for empty containers with potential savings on leasing empty containers. This logic is described in Figure 3.  
 
Theorem 1. 

The function ( )tG x  and ( )tJ x  are convex with x, given any t. 
 
Proof.  

See Appendix 1.  
 
Theorem 2. 

The optimal policy for offline model can be described as following: Given any state x, there exists state-independent 
optimal crucial point y∗ such that when the state x is below than y∗ , we should update the state to y∗ , otherwise do 
nothing.  
 
Proof. 

This is a standard result from inventory theory. Refer to Ross (1990).  
 

This optimal policy is a base-stock type policy which is independent with the state and therefore easy to implement.  
 
4.  MATHEMATICAL MODEL: ONLINE CASE 

In Section 3, 1
tD  is the accumulated demand at port 1 during stage t-1 and t. However, the decision for problem 

1( )tG x  is made in the middle of stage t. More precisely, it is made at the time epoch when the vessel arrives at port 2 
and all laden containers from port 2 to port 1 is loaded to the vessel (then we know the exact state 1

tx ). However, 
actually, at that epoch, part of 1

tD  has already realized. In offline model, we basically ignore that partially realized 
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information. The demand process is described in Figure 4. In this online model, we take this partially realized 
information into account. We define:  

i
td  :  The accumulated demand at port i from the ( 1)tht −  visit to the decision epoch. 
i
tD :   The accumulated demand at port i from the decision epoch to the tht  visit. 

 
Figure 4. Online Model: Explicitly consider partially available demand information 

 
Therefore, we can enhance the function ( )tG x  and ( )tJ x  as,  

1

1

1 1 1 2
1 1 1 1

2 2 2 1
2 2 2 2 1 1

( , ) min [ ( ) ( ) ( ( min( , ), ))]

( , ) min [ ( ) ( ) ( ( min( , ), ))]

t t t t t tx y V

t t t t t tx y V

G x d c y x L y E J V y y d D D

J x d c y x L y E G V y y d D D

β

β

≤ ≤

+ +≤ ≤

= − + + − + +

= − + + − + +
 

Note here the holding cost and shortage cost function 1( )L x  and 2 ( )L x  are different from that in previous model. 

( ) ( ) ( )t t t t t
i i i i i i iL x p E d D x h E x d D+ += + − + − −  

With this assumption, we prove that the optimal equations are convex and sub-modular. 
 
Theorem 3. 

The optimal functions ( , )tG x d  and ( , )tJ x d  are sub-modular and convex with x and d, given any t. 
 
Proof. 

See appendix 2. 
 
Theorem 4. 

The optimal policy for online model can be stated as follows: When the vessel departs from one port, decision 
maker should examine the number of total empty carrier-owned containers to be available at the other port, x, and the 
partially realized demand, d, when vessel arrives at the other port, if the realized demand is already greater than or equal 
to V, ship all empty containers; if the realized demand is less than V and the number of available empty containers is 
less than some crucial point ( )y d∗ , ship the difference ( )y d x∗ − ; otherwise do nothing. The crucial point ( )y d∗  is 
stage dependent, port dependent and monotonely increasing with d. 

 
Different with the policy in the offline case, the policy in the online case is state-dependent. The computation of the 

critical value in the optimal policy is complicated and the practitioners need decision support systems to put it into 
practice.  
 
5.  CONCLUSIONS AND DISCUSSIONS 

In this paper, we consider a simplified empty container repositioning problem with a fixed route that covers two 
ports. We formulate as a stochastic dynamic programming model and analyze the structures of optimal policies of 
empty repositioning decisions. In the offline model where the partially available demand information is ignored, we 
find that the optimal repositioning policy is indeed a base-stock policy. This policy is easy to implement and 
state-independent. In the online model where the partially available demand information is explicitly considered, we 
find that the optimal repositioning policy is a two-index threshold-type policy. This policy, however, is relatively 
difficult to implement as these crucial points are stage dependent, port dependent and state dependent. However, as 
the online model takes the advantage of real-time information, it could provide more economic value if it is well 
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implemented in a decision support system. It is very interesting to investigate theoretical bounds between the optimal 
objective values between the offline model and online model. It is also interesting to study multiple port case by 
treating two-port case as a sub-problem. They deserve future research.  
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Appendix 1: Proof of Theorem 1. 
 
Four supporting functions are needed to facilitate the proof.  
 

1

1

1 1 1 1 1

1 1 1 1 1

1 1 1

( ) min [ ( ) ( ) ( ( min( , )))]

min [ ( ) ( ( min( , )))]

( )

t tx y V

tx y V

t

G x c y x L y E J V y y D

c y L y E J V y y D c x

Q x c x

β

β
≤ ≤

≤ ≤

= − + + − +

= + + − + −

= −

 

And,  

1
2 2 2 2 1 2

2 2 2

( ) min [ ( ) ( ) ( ( min( , )))]

( )

t tx y V

t

J x c y x L y E G V y y D

H x c x

β +≤ ≤
= − + + − +

= −
 

Further, 
1

1( ) min [ ( )]t tx y V
Q x S y

≤ ≤
=  and 

2
2( ) min [ ( )]t tx y V

H x Z y
≤ ≤

= . 

 
Proposition 1.   
  ( )tH x  and ( )tQ x  are monotonely increasing and convex function if ( )tZ y  and ( )tS y  are convex. Specifically, 
suppose ( )tZ y  attains its minimum at a positive number 2x∗  and ( )nS x  attains its minimum at a positive number 2x∗  : 

2( )    

( ) ( )      
( )      

n

Z x V x x
H x Z x x x

Z V x V

∗ ∗

∗

∗

 ≥ ≥


= <
 >

 and, 
2( )    

( ) ( )      
( )      

n

S x V x x
Q x S x x x

S V x V

∗ ∗

∗

∗

 ≥ ≥


= <
 >

 

Proof.  

 According to the theorem in [2]: if ( )Z y  is convex on ( , )−∞ +∞   and attain its minimum at y∗ , then 

min[ ( )] ,L U

a y b
Z y Z Z

≤ ≤
= +  

where,  

(max( , )),
( ) (max( , )).

L

U

Z Z a y
Z Z b Z b y

∗

∗

=

= −
 

Let 2 ,a x b V= = , we can derive that,  

2

2( )    

min [ ( )] ( )     
( )      

x y V

Z y V y x
Z y Z x y x

Z V y V

∗ ∗

∗

≤ ≤
∗

 ≥ ≥


= <
 >

 

The relationship between ( )Z y  and ( )H y  can be described as Figure 5.  

 



 
Shi and Xu: A Markov Decision Process Model for an Online Empty Container Repositioning Problem in a Two-port Fixed Route 
IJOR Vol. 8, No. 2, 8−17 (2011) 

15 

 

Figure 5. Relationship between H and Q.  
 
   Similarly, we can reach the relationship between ( )tQ x  and ( )tS y . Therefore, we can see that ( )tH x  and ( )tQ x  
are monotonely increasing and convex function if ( )tZ x  and ( )tS x  are convex 
 
Proposition 2. 
  The function ( )tZ x  and ( )tS x  are convex, given any x. 

 

Proof. 
This can be done by mathematical induction. Given 1( ) 0NZ x+ =  and both 2 ( )c y x−  and 2 ( )L y  are convex with y. 
According to Proposition 1, the function 2 2 2( ) ( ) ( )NZ x c y x L y= − +  is convex with x. Therefore,  ( )NH x  and 

( )NG x  are convex according to Proposition 1. Then, we can prove that ( )NS x  and ( )NJ x  are convex. Then 
assuming that 1( )tZ x+  and 1 ( )tS x+  are covex, we can prove that ( )tG x  and ( )tJ x  are convex. By mathematical 
induction, we can prove that all ,  ,  ,  Z S G J are convex with x.  
 
   We can reach Theorem 1 according to Proposition 2.  
 
Appendix 2: Proof of Theorem 3. 

 

First, we can four supporting functions,  

1

2

1 1
1 1 1 1

2 2
2 2 2 2

1 1
1

2 2
2

( , ) ( , ) ,

( , ) ( , ) ,

( , ) min ( ( , )),

( , ) min ( ( , )).

t t t t

t t t t

t t n tx y V

t t n tx y V

G x d Q x d c x
J x d H x d c x
Q x d S y d

H x d Z y d
≤ ≤

≤ ≤

= −

= −

=

=

 

Proposition 1 and Proposition 2 are all hold for above four functions as well. Convexity can be shown as Theorem 1.  
Consider two cases. In the first case, 1

ty d≤ , function 1
1 1 1 2( , ) ( ) ( ( , )t t tS y d c y L y E J V Dβ += + +  is clearly convex 

and sub-modular.  
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In the second case, 1
ty d> , we need to derive 

2 1

1

( ( , )
( )

t

t

d S y d
dyd d

. We derive  ( ( , ))nd S y r
dy

 first. 

1

1

1

11
2 11 0 0

1 1 1 1 1

2 10

1
2 2 11 0 0

1 1 1 1 1

( ( , )) ( ) ( )( ( , ))
( ) ( )

( ( , )) ( ) ( )

( , ) ( ) ( ) ( )
( ) ( )

( (

t

n

t

y d

t tt t
t

ty d

y d

t t
t

n

d J V y d z r dF r dF zd S y d
c p h F y d p

dy dy

d J V r dF r dF z

dy

d H V y d z r c V y z dF r dF z
c p h F y d p

dy

d J V

β

β

β

β

− ∞

∞ ∞

−

− ∞

− + +
= + + − − +

+

− + + − − +
= + + − − +

+

∫ ∫

∫ ∫

∫ ∫

1

1

1

2 10

1
1

1 1 1 2 1 1 2 10 0

1 2
1

1 1 1 2 1 1 10

, )) ( ) ( )

( ( , ))
( ) ( ) ( ) ( )

( ( ( , ))
( ) ( ) ( )

t

t

t

y d

y d t t
t

y d t t t
t

r dF r dF z

dy
H V y d z r

c p h c F y d p dF r dF z
y

E H V y d z D
c p h c F y d p dF z

y

β β

β β

∞ ∞

−

− ∞

−

∂ − + +
= + + + − − +

∂

∂ − + +
= + + + − − +

∂

∫ ∫

∫ ∫

∫

 

Then, we can derive
2 ( ( , )d S y r
dydr

,  

2

10

1 1 2 1

2 2

1 1 2 1 1 1 '0

( ( ( , )) ( )
( ( , ))

( ) ( )

( ( ( , )) ( ( ( ', ))
( ) ( ) ( ) ( ) |

'

y r t t

n

y w t t t t
y V

E H V y r z Dd dF z
d S y r yp h c f y r

dydr dr
E H V y w z D E H y D

p h c f y w dF z f y w
y w y

β β

β β

−

−

=

∂ − + +
∂

= − + + − +

∂ − + + ∂
= − + + − + + −

∂ ∂ ∂

∫

∫

 

By induction, we can prove the sub-modularity. Assume that tH  is convex. The first term is clearly negative. The third 
term is negative as function tH  is monotone decreasing in terms of y. The second term is also negative as 

2( , )t tH V y w z D− + +  is convex withV y w z− + + . Similarly, we can prove that, 2( , )t tZ y D  is also sub-modular. 
Then, by observing the relationships between functions ,  ,  ,  ,  ,  Z S H Q J G , we can see sub-modularity preserves.  
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