
 
 

                     

International Journal of Operations Research Vol.8, No. 3, 1-14 (2011) 

Solving LFP by Converting it into a Single LP 

Mohammad Babul Hasan1* and Sumi Acharjee2,ψ 

1,2Department of Mathematics, University of Dhaka, Dhaka-1000, Bangladesh. 

Received December 2010; Revised May 2011; Accepted June 2011 

 
Abstract - In this paper, we introduce a computer-oriented technique for solving Linear Fractional Programming (LFP) 
problem by converting it into a single Linear programming (LP) problem. We develop this computer technique using 
programming language MATHEMATICA. We illustrate a number of numerical examples to demonstrate our method. 
We then compare our method with other existing methods in the literature for solving LFP problems.  
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1. INTRODUCTION 

Linear fractional programming (LFP) deals with that class of mathematical programming problems in which the relations 
among the variables are linear: the constraint relations must be in linear form and the objective function to be optimized 
must be a ratio of two linear functions. This field of LFP was developed by Hungarian mathematician B. Matros in 1960 
(1960, 1964). Nowadays linear fractional criterion is frequently encountered in business and economics such as:  Min 
[debt-to-equity ratio], Max [return on investment], Min [Risk asset to Capital], Max [Actual capital to required capital] etc. 
So, the importance of LFP problems is evident.  
 
There are a number of methods for solving the LFP problems. Among them the transformation technique developed by 
Charnes and Cooper (1962, 1973), the simplex type algorithm introduced by Swarup (1964, 2003) and Bitran & Novae’s 
method (1972) are widely accepted. Tantawy (2007) developed a technique with the dual solution. But from the analysis 
of these methods, we observe that these methods are lengthy, time consuming and clumsy.   
 
In this paper, we will develop a technique for solving LFP problem by converting it into a single linear programming (LP) 
problem. This method makes the LFP so easy that, we can solve any kind of LFP problem by using this method. Later, 
we develop a computer technique to implement this method by using programming language MATHEMATICA (2000, 
2001) for solving LFP problems. We also make a comparison between our method and other well-known methods for 
solving LFP problems. 

1.1.  Relation between LP and LFP 

In this section, we establish the relationship between LP and LFP problems.  
The mathematical form of an LP is as follows: 

Maximize (Minimize)    Z cx=                                                               (1) 

    subject to    Ax b=                                                               (2) 
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    0x ≥                                                                                    (3) 

    0b ≥                                                                                   (4) 

where, ( )1 2 1, , , , ,m m na a a aA a+…… …=  is a m n× matrix, mb R∈ , , nx c R∈ , x is a ( )1n×  column vector, and c is a 

( )1 n×  row vector.  

And the mathematical formulation of an LFP is as follows:  

Maximize    Z cx
dx

α
β

+
=

+
                                                                      (5) 

   subject to     Ax b≤                                                                              (6) 

0x ≥                                                                                (7) 

where, ( )1 2 1, , , , ,m m na a a aA a+…… …=  is a m n× matrix, mb R∈ , , , nx c d R∈ , , Rα β ∈ . 

It is assumed that the feasible region { }: , 0n Ax bS x xR∈ ≤ ≥=  is nonempty and bounded and the denominator

0dx β+ ≠ .  

Now, If 0d = and 1β = then the LFP in (5) to (7) becomes an LP problem. That is (5) can be written as: 

Maximize   Z cx α= +  
      subject to   Ax b≤ ; 0x ≥ . 

This is why we say that LFP is a generalization of an LP in (1) to (3). There are also a few cases when the LFP can be 
replaced with an appropriate LP. These cases are discussed as follows: 

Case 1: 

If  0d = and 1β ≠  in (5), then Z becomes a linear function  

1

 Z c Zx α
β β β

+ ==   , where 1Z cx α= +  is a linear function. 

In this case Z may be substituted with 
1

 Z
β

corresponding to the same set of feasible region S. As a result the LFP 

becomes an LP. 
 

Case 2: 

If 0c = in (5) then 2   
dx Z

Z α α
β
=

+
= , where 2Z dx β= + is a linear function. 

In this case, Z becomes linear on the same set of feasible solution S. Therefore the LFP results in an LP with the same 
feasible region S. 

Case 3: 

If 1 2( , ,  )nc cc c ……………= , 1 2( , , )nd dd d ……………= are linearly dependent, there exists 0µ ≠ such that c dµ= , 

then    dx
dx dx

Z µ α α µβµ
β β
+ −

= +=
+ +

Z  

(i) if 0α µβ− = , then Z µ= is a constant. 
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(ii)if 0α µβ− >  or 0α µβ− < i.e., if 0α µβ− ≠ then Z becomes a linear function. Therefore the LFP becomes an LP 
with the same feasible region S. 

If   0c ≠  and  0d ≠  then one has to find a new way to convert the LFP into an LP. Assuming that the feasible region    

{ }: , 0nS x R Ax b x= ∈ ≤ ≥  

is nonempty and bounded and the denominator 0dx β+ > , we develop a method which converts an LFP of this type  
to an LP. 

The rest of the paper is organized as follows. In Section 2, we discuss the well-known existing methods such as Charnes 
& Coopers method (1962), Bitran & Novaes method (1972) and Swarup’s method (1964). In Section 3, we discuss our 
method. Here we also develop a computer technique for this method by using programming language 
MATHEMATICA. We illustrate the solution procedure with a number of numerical examples. In Section 4, we make a 
comparison between our method and other well-known methods considered in this research. Finally, we draw a 
conclusion in Section 5. 
 
2. EXISTING METHODS 
 
In this section, we briefly discuss most relevant existing research articles for solving LFP problems. 
 
2.1 Charnes and Coopers method (1962) 
 
Charnes-Cooper (1962) considered the LFP problem defined by (5), (6) and (7) on the basis of the assumptions: 

i. The feasible region X is nonempty and bounded. 
ii. cx α+ and dx β+ do not vanish simultaneously in S.  

The authors then used the variable transformation y tx= , 0t ≥ , in such a way that  
dt β γ+ =  where 0γ ≠ is a specified number and transform LFP to an LP problem. Multiplying numerator and 
denominator and the system of inequalities (6) by t and taking y tx= , 0t ≥   into account, they obtain two equivalent 
LP problems and named them as EP and EN as follows: 

(EP)        Maximize ( ),  L y t cy tα≡ +  

              subject to, 0Ay bt− ≤         , 
                                                                              dy tβ γ+ = ,  , 0y t ≥  
And                                                       (EN)        Maximize   -cy- tα  
                                                                              subject to, 0Ay bt− ≤ , 
                                                                               1dy tβ− − = , , 0y t ≥  
Then they proceed to prove the LFP based on the following theorems. 
 
Theorem 2.1: For any S regular, to solve the problem LFP, it suffices to solve the two equivalent LP problems EP and 
EN. 
 
Theorem 2.2: If for all x ∈S, 0dx β+ =  then the problem EP and EN are both inconsistent. i.e., LFP is undefined. 
 
In their method, if one of the problems EP or EN has an optimal solution or other is inconsistent, then LFP also has an 
optimal solution. If anyone of the two problems EP or EN is unbounded, then LFP is also unbounded. Thus if the 
problem solved first is unbounded, one needs not to solve the other. Otherwise, one needs to solve both of them. 

Demerits  
In their method, one needs to solve two LPs by Two-phase or Big-M simplex method of Dantzig (1962) which is 
lengthy, time consuming and clumsy. 
 
2.2. Bitran and Novae’s Method (1972) 
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In this section, we summarize the method of Bitran & Novaes.  Assuming that the constraint set is nonempty and 
bounded and the denominator     𝑑𝑇 + 𝛽 > 0 for all feasible solutions, the authors proceed as follows: 

i. Converted the LFP into a sequence of LPs.  
ii. Then solved these LPs until two of them give identical solutions. 

 
 Demerits 

i. In their method, one needs to solve a sequence of problems which sometimes may need many iterations. 
ii. In some cases say, 0dx β+ ≥ and 0cx α+ <  x S∀ ∈ ,  Bitran-Novaes method fails. 

 
2.3. Swarup’s Method (1964) 
 
In this section, we summarize Swarup’s simplex type method. The author assumed the positivity of the denominator of 
the objective function. It moves from one vertex to adjacent vertex along an edge of the polyhedron. The new vertex is 
chosen so as to increase the objective function (for maximization). The process terminates in a finite number of iteration 
as there are only a finite number of vertices. Methods for finding an initial vertex are the same as that of the simplex 
method. 

i. Swarup directly deals with fractional program. In each step, one needs to compute 
 ∆ j  = Z2 (cj –Zj

1) – Z1 (dj –Zj
2)  

ii. Then continue the process until the value of   ∆𝑗 satisfies the required condition.  
Demerits: 

i. Its computational process is complicated because it has to deal with the ratio of two linear functions for 
calculating the most negative cost coefficient or most positive profit factors in each iteration.  

ii. In the case, when the constraints are not in canonical form then swarup’s method becomes more lengthy as it 
has to deal with two-phase simplex method with the ratio of two linear functions. 

 
2.4.  Harvey M. Wagner and John S. C. Yuan (1968) 
 
In this section, we briefly discuss the Wagner and Yuan’s paper. In their paper the authors compared the effectiveness of 
some published algorithms such as Charnes and Cooper (1962)’s method, the simplex type algorithm of Swarup (1964) 
for solving the LFP problem.  
From the above discussion about the well-known existing methods, one can observe the limitations and clumsiness of 
these methods. So, in the next section, we will develop an easier method for solving LFP problems. 

 
3. OUR METHOD 

In this section, we will develop a sophisticated method for solving LFP problems. For this, we assume that the feasible 
region    

{ }: , 0nS x R Ax b x= ∈ ≤ ≥  

 is nonempty and bounded and the denominator 0dx β+ > .  If 0dx β+ < , then the condition
( )
( )

0
Ax b
dx

β
β β

−
≤

+
 will not 

hold. As a result solution to the LFP cannot be found. 
 
3.1 Derivation of the method: 
Consider the following LFP problem 

                                                Maximize  Z cx
dx

α
β

+
=

+
                                                          (8) 

                    Subject to      ,  0Ax b x≤ ≥                                                   (9) 
Where ( )1 2 1, , , , ,m m na a a aA a+…… …=  is a m n× matrix, mb R∈ , , , nx c d R∈ , , Rα β ∈ . 
Now we can convert the above LFP into a LP in the following way assuming that 0β ≠ . 
 
3.2 Transformation of the objective function 
Multiplying both the denominator and the numerator of (3.1) by β we have 
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( ) ( )

( ) ( )    
( )

cx cx dx dx c d x dx xc d py g
dx dx dx dx

Z β αβ β α α αβ β α α β α α
β β β β β β β β β

 + − + + − + +
= = = − + = ++ + + 

=  +
  

  Where  c dp α
β

 
− 

 
= ,  y x

dx β
=

+
 and g α

β
=    

( )F y py g∴ = +                                                                             (10) 
3.3 Transformation of the constraints 
Again from the constraint (9), we have, 

                                                                             
( )
( )

0
Ax b
dx

β
β β

−
<

+
 

    
( )

0Ax b
dx
β β

β β
−

≤
+

  

    
( )

  0Ax bdx bdx b
dx

β β
β β
+ − −

≤
+

 

 
( )

( )
( )

0

bA d x
b dx

dx dx

β
ββ

β β β β

 
+  +  − ≤
+ +

 

 b x bA d
dxβ β β

 
+ ≤  + 

 

   Gy h≤                                                                                               (11) 

Where 
bA d G
β

+ = , 
x y

dx β
=

+
,

b h
β
=  

     From the above equations we finally obtain the new LP form of the given LFP as follows: 
                                                                    (LP)      Maximize  ( )F y py g= +     
                                                                                  subject to,  Gy h≤ , 0y ≥  
Then solve this LP in a suitable method for y.  
 
 3.4 Calculation of the unknown variables of the LFP 

 From the above LP, we get  
xy

dx β
=

+
. Using this definition we can get  

                                          
1

x y
dy

β=
−

                                                                              (12) 

which is our required optimal solution. Now putting the value of x in the original objective function, we can obtain the 
optimal value. 
 
3.5 Numerical examples          
  
In this section, we will illustrate some numerical examples to demonstrate our method.                
 
Numerical example 1:  This numerical example is taken from Hasan (2008).         

Maximize  1 2

1 2

  2 3
 

1
x x

x x
Z +

+ +
=  

                                                                         subject to  1 2 3x x+ ≤      
              1 2x 2x 3+ ≤ ,    

          1 2x , x 0≥  
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Solution:  Here we have ( ) ( ) ( )1 1 2 2  2,  3 ,   1,  1 ,    0,    1,   1,  1 ,   3,   (1,2),  3c d A b A bα β= = = = = = = =   where A1, 
b1 are related to the first constraint and A2, b2 are related to the second constraint. So, we have the new objective 
function,  

                Maximize ( ) ( ) ( )0 0 [ 2,  3 1,  1 ] 
1 1

F y y= − +  [According to equation (10)]                                                                                                                                             

                                          1 22 3y y= +  

                 Now for the first constraint we have, 

                                                     ( ) ( )  1,  1 3 /1 1,  1 3 /1y+ ≤      [According to (11)] 

 ( ) ( )1,  1 3,  3 3y+ ≤    

 1 24 4 3y y+ ≤  
Similarly for the second constraint we have  

                                                     ( ) ( )1,  2 3 /1 1,  1 3y+ ≤    

  1 24 5 3y y+ ≤  
 
So, finally we get the new LP problem, which is given by  
                                         
                                                                        Maximize      ( ) 1 22 3F y y y+=                                              

                                                                        subject to      1 24 4 3y y+ ≤ ; 1 24 5 3y y+ ≤  
                                                                                             1 2, 0y y ≥   
Now we will solve the above LP by simplex method. 
Converting the LP in standard form we have, 
                                                                        Maximize      ( ) 1 22 3F y y y+=                                              

                                                                        subject to      1 2 1 34 4y y s+ + = ; 1 2 2 34 5y y s+ + =  
                                                                                             1 2 1 2, , , 0y y s s ≥   
 
Now we get the following simplex table- 

Table-1 
 

CB 
c j 2 3 0 0  

b Basis y1 𝑦2 𝑠1 𝑠2 
0 𝑠1 4 4 1 0 3 
0 𝑠2 4 5 0 1 3 

*
j j jc c z= −  2 3 0 0 F(y) = 0 

 
Optimal Table 

 
CB 

c j 2 3 0 0  
b Basis y1 𝑦2 𝑠1 𝑠2 

0 𝑠1 4/5 0 1 -4/5 3/5 
3    𝑦2 4/5 1 0 1/5 3/5 

*
j j jc c z= −  - 2/5 0 0 -3/5 F(y) =9/5 

 
So, we have y1 = 0, y2 = 3/5.  Now using (3) we get the value of x. 
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( )

( )
( )( )

( )
( )

( )
1 2

1 2
1 2

3 3 30, 1 0, 0,( , ) 5 5 5, )
23 31 1,1 ( , ) 1 1,1 0, 1 0 55

(
5

y yx x
y y
β

= = = =
− − − +

 

                                   ( ) ( )1 2
3, 0, 2x x∴ =  

Putting this value in the original objective function, we have   

                                                            
92 0 3 3 / 2 92

3 5 50 1 22

Z × + ×
= =

+ +
=   

 
So, the optimal value is Z = 9/5 and the optimal solution is x1= 0, x2 =3/2. 
In the following table, we present the number of iterations required for solving the above example in different methods. 
 
Table 1: Number of iterations required in different methods. 
Charnes & Cooper (1962) Bitran & Novae (1972) Swarup (1964) Our method 
EN  1 iteration and inconsistent 1st  LP - 2 iterations 

2nd LP - 2 iterations 
 

2 Iterations with clumsy 
calculations of LFP 

2 Iterations with easy 
calculations of LP 

EP 3 iterations in Phase I 
2 iterations in Phase II 

 
Numerical example 2:  This numerical example is taken from Bajalinov (2003). 
                                         

 Maximize 1 2?

1 2

  6 3 6
5 2 5

Z
x x
x x
+
+

=
+
+

 

                                                               subject to,  1 24 2 20x x− ≤ ; 1 23x 5x 25+ ≤ ; 1 2x , x 0≥   
 
Here we have c = (6    3), d= (5    2), α = 6, β = 5, A1 = (4    -2), b1 = 20, A2 = (3     5), b2 =25  
Where A1, b1 are related to the first constraint and A2 , b2 are related to the second constraint. 
So, we have the new objective function  

Maximize ( ) ( ) ( )1 1 1
2

2 2 2

6 6 3 63( ) ( ) 6 3 5 2 0 55 5 5 5
y y y

F y c d y
y y y

α α
β β

      = − + = − + = = +            
 

Now for the first constraint we have, 

( ) ( )20 204 -2 5 25 5y + ≤   

 ( ) ( )4 -2 20 8 4y+ ≤    

 1 224 6 4y y+ ≤  
Similarly for the second constraint we have  

         ( ) ( )25 253 5 5 25 5y + ≤   

 ( ) ( )3 5 25 10 5y+ ≤    

 1 228 1 55y y+ ≤  
 
So, finally we get the new LP problem, which is given by  

Maximize ( ) 1
3 6
5 5

F y y= +  

                                                                        Subject to  1 224 6 4y y+ ≤ , 1 228 15 5y y+ ≤ ,  1 2, 0y y ≥      
Now we will solve the above LP by simplex method. 
Converting the LP (4.8) in standard form we have, 



8 
Babul Hasan  and Sumi Acharjee: Solving LFP by Converting it into a Single  LP  
IJOR Vol. 8, No. 3, 1-14 (2011) 
 

 
 

Maximize ( ) 1
3 6
5 5

F y y= +  

                                                                        Subject to 1 2 124 6 4y y S+ + = , 1 2 228 15 5y y S+ + = ,  1 2 1 2, , , 0y y s s ≥    
                                         
 
 

Table-1 
     
     CB 

    c j        0    3/5      0       0      
      b   Basis    y1       𝑦2       𝑠1      𝑠2 

     0    𝑠1     24     6       1      0       4 
     0    𝑠2    28      15       0       1       5 

𝑐𝑗∗ = 𝑐𝑗 − 𝑧𝑗     0     3/5
∆
→       0       0 F(y) = 0 

 
Optimal Table 

     
     CB 

       c j        0    3/5      0       0       
        b   Basis    y1       𝑦2       𝑠1      𝑠2 

     0 𝑠1     -64/5     0       1     -2/5       2 
     3        𝑦2    28/15      1         0       1/15       1/3          

𝑐𝑗∗ = 𝑐𝑗 − 𝑧𝑗    - 28/25      0         0       -1/5 F(y) =7/5 
 
So, we have 1 2

1y  0,  y 3= = .  Now we get the value of x. 

                                    ( ( )
( ) ( )

1 2
1 2

(0 ) (0 ) (0 ) (0 )( )
5 5 5

0 0 2 21 (0 ) 11 5 2 ( ) 1 5 2 ( ) 3 3
1/ 3 1/

1 1 1 1     3 3 3 3 
1

3
3

y yx x
ββ

= = = = =
− + −− −

 

                                  ∴ (𝑥1     𝑥2) = (0    5) 
Putting this value in the original objective function, we have   

6 0 3 5 6 7
5 0 2 5 5 5

Z × + × +
=

× + ×
=

+
 

So, the optimal value is Z = 7/5 and the optimal solution is x1= 0, x2 =5. 
 
3.6   Algorithm for solving LFP problems in our method  
 
In this section, we present the algorithm to implement our method. Our method first converts the LFP to an LP. Then 
find all the basic feasible solutions of the constraint set of the resulting LP. Comparing the values of the objective 
function at the basic feasible solutions, we get the optimal solution to the LP. Then the solution to the LFP is found. 
Our method proceeds as follows: 
Step 1: Express the new LP to its standard form. 
Step 2: Find all m × m sub-matrices of the new coefficient matrix A by setting n − m variables equal to zero. 

Step 3: Test whether the linear system of equations has unique solution or not. 

Step 4: If the linear system of equations has got any unique solution, find it. 

Step 5: Dropping the solutions with negative elements, determine all basic feasible solutions.  

Step 6: Calculate the values of the objective function for the basic feasible solutions found in step 5. 

Step 7: For the maximization of LP the maximum value of F(y) is the optimal value of the objective function and the 
basic feasible solution which yields the value of y.  

Step 8: Find the value of x using the value of y from the required formula. 

Step 9: Finally putting the value of x in the original LFP, we obtain the optimal value of the LFP. 
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3.7.  Mathematica code for solving LFP problems 
 
In this section, we develop a computer program incorporated with method developed by us. This program obtains all 
basic feasible solutions to the feasible reasion of the resulting LP problem and then obtains the optimal solution. 
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Solution of Numerical Example 1 in Section 3.5: 

 

 
 
Solution of Numerical Example 2 in Section 3.5: 
Input: 
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Output: 

 
 

Numerical example 3:               Maximize 
( )
( )

1 2

1 2

6x 5x 1
2x 3x 1

Z
+ +
+ +

=   

            subject to, 1 22x 2x 10+ ≤ , 1 23x 2x 15+ ≤ , 1 2x , x 0≥   
 
The converted new LP for the problem is given by 

Maximize ( ) 1 24 2 1F y y y= + +  

                                                                    Subject to   1 222 32 10y y+ ≤ , 1 233 47 15y y+ ≤ ,  1 2, 0y y ≥      
For this problem the input and output are as follows- 

 

Output: 

 
 
Numerical example 4:  
 
Suppose that the financial advisor of a university’s endowment fund must invest up to Tk100, 000 in two types of 
securities: bond7stars, paying a dividend of 7%, and stock MaxMay, paying a dividend of 9%. The advisor has been 
advised that no more than Tk30, 000 can be invested in stock MaxMay, while the amount invested in bond7stars must be 
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at least twice the amount invested in stock MaxMay. Independent of the amount to be invested, the service of the broker 
company which serves the advisor costs Tk100.  
How much should be invested in each security to maximize the efficiency of invested? 
The resulting LFP is as follows: 
 

Maximize 1 2 1 2

1 2 1 2

( , ) . .07
(

09
, ) 100

R x x x x
D x x x x

Z =
+

=
+

+
=  

Subject to 1 2 100000x x+ ≤ , 1 22 0x x− ≥ , 2x 30000≤ , 1 2, 0x x ≥  
 
The converted new LP for the above problem is given by                                   

Maximize ( ) 1 2.07 .09F y y= +  

                                                            Subject to 1 21001 1001 1000y y+ ≤ , 1 2300 301 300y y+ ≤ , 
                                                                          1 22 3y y− + ≥ , 1 2, 0y y ≥  
Input & output of the above problem- 

 

Output: 
 

 
 

 
In the following table, we presented the number of iterations required for solving the above example in different 
methods. 
 

Table 2: Number of iterations required in different methods in real life example. 
Charnes & Cooper (1962) Bitran & Novae (1972)  Swarup (1964) Our method 
EN  1 iteration and inconsistent 1st  LP - 2 iterations in Phase I 

             1 iteration in Phase II 
 
2nd LP – Method Fails 
 

2 iterations in Phase I 
1 iterations in Phase II 
with clumsy calculations 
of LFP 

2 Iterations with 
easy calculations of 
LP EP 3 iterations in Phase I 

1 iterations in Phase II 

 
 Numerical example 5:  This numerical example is taken from the Chapter 7 of Bajalinov (2003). 

Maximize 1 2?

1 2 3 4?

   2 3.5 1
2 2 3.5 3 4

x x x x
x x

Z
x x

+ + + +
+ + + +

=  

                     subject to, 1 2 3 22 3 3 10x x x x+ + + ≤ , 1 2 3 4x 2x 14x x+ + + ≤ , 1 2 3 4,, 0, x xx x ≥  
 
The optimal solution of this problem is 1 2 3 4 0,  6.4,   1.2,  0x x x x= = = =  with the optimal value of the objective 
function  Z = 0.845714. 
 
Solution in our method: 
Here we have ( ) ( ) ( ) ( )1 2 1 11 2 3.5 1 , 2 2 3.5 3 ,  1,  4,  2 1 3 3 ,  1 2 1 1 , 10, 14c d A A b bα β= = = = = = = = ,  

Here 1A , 1b are related to the first constraint and 2A  , 2b  are related to the second constraint. 
So, we have the new objective function  
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Maximize ( ) ( ) ( )

1

1 2
1 2 3 4

2 3

4

1 1 1 3 10.5 1 11 2 3.5 1 - 2 2 3.5 3
4 4 2 2 4 4 4

y
y y

F y c d y y y y
y y

y

α α
β β

 
       = − + = + = + + + +         
 
 

 

Similarly, the two constraints can be found as follows: 

1 2 3 4
47 42 107 6
4 4 4

y y y y+ + + ≤  

And                                                               1 2 3 4
53 46 148 9
4 4 4

y y y y+ + + ≤                                                  

So, finally we get the new LP problem, which is given by  

Maximize ( ) 1 2 3 4
1 3 10.5 1 1
2 2 4 4 4

F y y y y y= + + + +  

                                                      subject to  1 2 3 4
47 42 107 6
4 4 4

y y y y+ + + ≤  

      1 2 3 4
53 46 148 9
4 4 4

y y y y+ + + ≤ ,  

1 2 3 4, , , 0y y y y ≥     
Input: 

 
Output: 

 
So, we observe that our computer oriented method can solve any LFP problem easily. The obtained results are identical 
to that obtained from the other methods. In fact, it converges quickly. In the following section, we will make some more 
comparison between our method and other well-known methods in the following section. 
 
 4. COMPARISON 
 
Comparing all the methods considered in this paper with our method, we clearly observe that our method is better than 
any other methods considered in this research. The reasons are as follows- 

i. We can solve any type of LFP in this method. 
ii. In this method, we can convert the LFP problem into an LP problem easily by using some steps. 
iii. In other methods, one needs to solve more than one LPs. But in our method, we need to solve a single LP, 

which helps us to save our valuable time. 
iv. Its computational steps are so easy that there is no clumsiness of computation like other methods. 
v. The final result converges quickly in this method. 
vi. Assuming β>0, there is no other restriction for the sign of the denominator. 
vii. In some cases say, dx+β ≥ 0 and +𝛼 < 0  ∀ 𝑥 ∈ 𝑋 , where Bitran-Novaes fails, our method can solve the 

problem very easily. 
viii. Finally using the computer program, we can solve any LFP problem and get the optimal solution very quickly. 

Considering all the above things, we conclude that this method is better than the other well known methods considered 
in this paper to solve LFP problems.  
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5. CONCLUSION 
 
Our aim was to develop an easy technique for solving LFP problems. So in this paper, we have introduced a computer 
oriented technique which converts the LFP problem into a single LP problem. We developed this computer technique 
by using programming language MATHEMATICA. We also highlighted the limitations of different methods. We 
illustrate a number of numerical examples to demonstrate our method. We then compare our method with other existing 
methods in the literature for solving LFP problems. From this comparison, we observed that our method gave identical 
result with that obtained by the other methods easily. So, we conclude that, this method is better than the other well 
known methods considered in this paper for solving LFP problems.  
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