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AbstractIn this work a discrete and a dynamic model for evaluating the reliability of telecommunication networks, are 
defined, in the case where the set of terminals 𝒦 is arbitrary. Three methods are presented. The first one is exact type called 
generalized method of Ahmad, while the two others are approximate and simulation-based type. The three methods are 
compared by an application to the Bejaia district telecommunications network. The results show that the network is susceptible 
to failures having negative impact on the quality of the service offered to the users.   
KeywordsTelecommunications network design and planning, 𝒦-terminal reliability, partition, simulation.  
 
 
1. INTRODUCTION 
 
    Analysis of network reliability is of major importance in communication networks. Because some components of a 
particular network may be subjected to random failure, we need to compute, as efficiently as possible, the probability that the 
network is still functional. Such systems are generally modelled either by combinatorial models, or by stochastic processes. This 
work, considers models known as combinatorial models and is related to the tools that allow modelling and assessing these 
systems. The main problem is that the system's state size increases in a exponential manner with the details level of the 
represented system, as in the case of telecommunication networks. The exact methods become, then impractical, in the case of 
large networks (Cancela, 1996). Alternatively, Monte Carlo type simulation methods may be used. However, failures occur very 
rarely in the case of highly reliable systems. As a consequence, the reliability of these systems cannot be easily estimated with a 
reasonable confidence interval. This problem can be solved using techniques based on variance reduction. The study of a 
network behavior, when some of its components are subject to random failures is treated by reliability theory. We construct a 
model based on graph concept including the available statistical data, related to properties depending both on the components 
(terminals and links) and the service that the network has to provide. The reliability evaluation considered here is the probability 
that, at time 𝑡, several sites (terminals) may communicate in a bi-directional network in which the terminals are assumed perfect, 
and the links are subject to random and independent failures using the 𝒦-terminal reliability concept. Two models (discrete and 
dynamic) for evaluating the reliability of the telecommunications network of Bejaia district are presented. In the first case, a 
point estimate of the reliability by three methods is calculated. The first one is the exact estimate called the generalized method 
of Ahmad and the two others are based on simulation. In the dynamic case, an elementary lifespan is associated to each element 
of the network, in order to evaluate the reliability indices of the network, namely the reliability function and the mean time 
between failures (𝑀𝑇𝐵𝐹). This work is based on the following assumptions: the failures occurrences are independent, the 
connections have equal probability of correct operations and the use of the concept of 𝒦-terminal reliability. The application of 
the presented methods to the telecommunications network of Bejaia district is described. 

 
2. LITERATURE REVIEW 

  
2.1 Network reliability 
 

Reliability models allow to evaluate the capacity of a given system or product to operate correctly (according to 

                                                       
∗ Corresponding author’s email: adjabi@hotmail.com 
 
1813-713X Copyright © 2011 ORSTW 

International Journal of 
Operations Research 



35 
Adjabi and Bouchama: 𝒦-terminal reliability Evaluation of a Telecommunications Network represented by a Discret and a Dynamic model 
IJOR Vol. 8, No. 3, 34−43 (2011) 
 
specifications). In particular, when the system is made up of a number of individual components, it is necessary to consider their 
interactions and how their possible failures will affect the operation of the whole system ( Lin, 2002). 

A telecommunication network is defined as a set of nodes connected by edges, so as to allow the transmission of messages 
from an extremity to another. When components of a network are subject to random failures, the network may be functional or 
not after the failure of some components. The probability that the network will function is its reliability (Lucet, 1997). 

We distinguish three kinds of reliability:   
2-terminal reliability: also called terminal-pair reliability, it is the probability that two given nodes of the graph, called the 

source and the sink, can communicate ( Lucet 1997). 
All-terminal reliability: we define the all-terminal reliability as the probability that for every pair of nodes there is at least a 

path between. This is equivalent to the probability that there is at least one spanning tree in the graph  (Hou , 2003).  
𝓚-terminal reliability: the 𝒦-terminal reliability is the probability that for 𝒦 specified target nodes, the graph contains 

paths between each pair of the 𝒦 nodes (Hou , 2003).  
   Note that 2-terminal reliability and all-terminal reliability are particular cases of the 𝒦-terminal reliability.  
 

2.2  Notations 
   

Let 𝒢 = (𝒱,ℰ,𝒦, 𝑟) be an undirected, connected, and acyclic network, where 𝒱 = {1,⋯ ,𝑛} is the set of nodes of the 
network and ℰ = {𝑒1,⋯ , 𝑒𝑚} the set of links of the network. The set 𝒦 ⊆ 𝒱 is called the set of terminals of the network. 
The links of the graph are assumed to be susceptible to break down, the function 𝑟 being the probability of correct operation 
of every link. The following notation is used:   
• 𝑋𝑖 the binary random variable " state of the link 𝑒𝑖 ", is defined by : 
 

𝑋𝑖 = �
1 𝐼𝑓 𝑡ℎ𝑒 𝑙𝑖𝑛𝑘𝑒𝑖 𝑤𝑜𝑟𝑘𝑠 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦
0 𝐼𝑓 𝑡ℎ𝑒𝑙𝑖𝑛𝑘 𝑒𝑖 𝑖𝑠 𝑏𝑟𝑜𝑘𝑒𝑛𝑑𝑜𝑤𝑛,  

• 𝑟𝑒𝑖 : the elementary reliability of the link 𝑒𝑖, 𝑟𝑒𝑖 = 𝑃{𝑋𝑖 = 1},  
• 𝑋 = (𝑋1,⋯ ,𝑋𝑚): The random state vector of the network,  
• Φ𝒢

𝒦(𝑋): the random variable « state of the network 𝒢»;  

Φ𝒢
𝒦(𝑋) = �

1    𝑖𝑓 𝑡ℎ𝑒𝑔𝑟𝑎𝑝ℎ𝑑𝑒 𝑑𝑢𝑐𝑒𝑑 𝑓𝑟𝑜𝑚 𝒢 𝑏𝑦 𝑑𝑟𝑜𝑝𝑝𝑖𝑛𝑔
    𝑡ℎ𝑒 𝑏𝑟𝑜𝑘𝑒𝑛 𝑙𝑖𝑛𝑘𝑠 𝑖𝑛 𝑋 𝑖𝑠 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑
0    𝑒𝑙𝑠𝑒.

 

 • 𝑅𝒦(𝒢) = 𝑅𝒦 = 𝑃�Φ𝒢
𝒦(𝑋) = 1�: the 𝒦-terminal reliability of the network 𝒢.  

 • 𝑅(𝒢): probability that the graph 𝒢 is connected (all-terminals reliability).  
  

2.3  Complexity of network reliability computation 
 

The problem of the evaluation of a network reliability has been treated by a lot of works in the literature, where several 
methods were developed. The works of Ball, Provan and Valiant (Wood, 1985), (Ramirez-Marquez, 2005), have permitted to 
classify this problem in the NP-hard class. Consequently, it was conjectured that there is no exact method which can estimate 
reliability of a network, at a polynomial time according to its size. When the size of a problem is large, we solve it by 
approximative methods such as Monte Carlo simulation, then to validate the obtained results, we use an exact method which is 
the most effective possible and easy to implement (Cancela, 1996).  
 
2.4  Methods of resolution 
 

There are two classes for computation of network reliability. The first class is for approximate computation while the 
second class is concerned with exact computation of network reliability. The existing algorithms in exact computation are in two 
different categories, the first category deals with the enumeration of all the minimum paths or cuts. In the second one, the 
algorithms are based on reducing the graph representing the network by removing some of its components. These reductions 
allow us to compute the reliability in a simpler way. In (Lucet, 1997), the authors distinguished:  
 
2.4.1 Enumerative methods 
 
State enumeration: It consists in enumerating all the possible states of the stochastic graph and keeping those that allow the 
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network to function 𝑅(𝒢) = ∑  𝐺(𝑋)𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠 𝑃𝑟𝑜𝑏(𝑋), where 𝑋 is a state of the network.  
Path enumeration: An other method to compute the network reliability is the enumeration of the minimal paths that provide a 
working network. The reliability is the probability for the network to have at least a functioning minimal path.  
Cut enumeartion: A cut is a set of links whose failures produce network failure. A minimal cut is a cut that does not include 
another one. After enumerating all the minimal cuts, We obtain a boolean expression that we transform into a probability 
expression 𝑃𝑟′ using the inclusion-exclusion method or the technique of the sum of disjoint product (Lucet, 1997). Then, the 
reliability is computed by: 𝑅(𝒢) = 1 − 𝑃𝑟′. Cut enumeration is essentially used for 2-terminal reliability.  

  
2.4.2 Reduction-Factoring methods 
 

A reduction is a topological method that can be applied to stochastic undirected graphs. we first suppose that the nodes are 
perfect. The reduction principle consists in reducing the size of the network 𝒢 to get a new graph 𝒢′, such that 𝑅(𝒢) = Ω ×
𝑅(𝒢′), where Ω is the reduction factor. For this, a part of the network, with a specific topology, is replaced by an other one 
with new links whose failure probabilities depend on the previous links probabilities. The reduction have to be applied until the 
obtained graph 𝒢′ can not be reduced. When it's not possible to totally reduce a graph with the reduction method, it is often 
combined with the factoring method (Wood, 1985), that divides the reliability problem into sub-problems on which we can 
apply some reductions. 
 
 2.4.3 Decomposition methods  
 

The decomposition method can solve the reliability problem for some classes of stochastic undirected graphs in linear time.
The decomposition principle for reliability problems generalizes the basic decomposition principle of a graph 𝒢 into subgraphs 
𝐻 and 𝐿 separated by an articulation node, which allows the all-terminal reliability to be computed by the formula: 𝑅(𝒢) =
𝑅(𝐻) × 𝑅(𝐿). 
 
3. DISCRETE MODEL 

 
The discrete model aims to compute the 𝒦 − 𝑟𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 at discrete moments of time, depending on the elementary 

reliability of the components of the network. 
In this work, we have used two approximative approches: the crude Monte Carlo simulation and the method of Antithetic 

variates. The exacte method used to validate the results is the generalized method of Ahmad.  
 

3.1  Exact evaluation by the generalized method of Ahmad 
 

The Ahmad method belongs to the family of partitioning methods for computing the source-terminal reliability. It has been 
introduced in (Ahmad, 1982), (Ahmad, 1987), and in  (Marie, 1988), with more powerful versions, but always within the 
framework of source-terminal reliability. In (Cancela, 1996), the general 𝑅𝒦case is presented.  
    This method is based on the assumptions of independence between the behavior of the different links, the nodes are 
supposed to be perfect. 

Let us denote by 𝐶𝑘, the event " the graph is 𝑘-connected". We have then 𝑅(𝒦) = 𝑃(𝐶𝑘). Let have {𝜋1, . . ,𝜋𝑛𝑘}, the 
set of the 𝑘-trees and 𝑃𝑗, the event " each link in the 𝑗𝑡ℎ 𝑘 −tree is working correctly ".Then,  𝐶𝑘 = ⋃  𝑗 𝑃𝑗. 

Since, the events 𝑃𝑗 are not independent, the formula above is not very useful for computing 𝑅𝑘. Consequently, we 
define an other partition of 𝐶𝑘, 𝐶𝑘 = ⋃  𝑗 𝐵𝑗, where 𝐵𝑗 are disjoint events. Hence, we'll have 
𝑅𝑘 = 𝑃(𝐶𝑘) = ∑  𝑗 𝑃(𝐵𝑗). 

The events 𝐵𝑗 are called "branches". These branches are identified using alphabetic symbols sequences, each branch moves 
continuously, until having an element of the partition, that is what we call a finished branch. Now, we compute the probability of 
such event and accumulate it, but without storing the branch, this is why this method requires a very small size of memory. 
 
3.2  Evaluation by simulation 
 

Due to the complexity of evaluating the exact value of the reliability of the network, approximate methods based on 
simulation are proposed.  
 
3.2.1  Standard Monte Carlo method 
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Monte Carlo methods provide approximate solutions to a variety of mathematical problems by performing statistical 
sampling experiments. They can be loosely defined as statistical simulation methods, where statistical simulation is defined in 
quite general terms to be any method that utilizes sequences of random numbers. 

The standard Monte Carlo simulation method is used as a reference for comparing the various methods of estimating the 
parameter 𝑅𝒦(𝒢). This method is also called Monte Carlo crude or naive method, because it is the most direct method for 
computing the network reliability by simulation (Cancela, 1996). 

Let Ω = {0,1}𝑚 denote the set of the possibilities of the random vector 𝑋 = (𝑥𝑒)𝑒∈ℰ. The assumption of independency 
of the variables 𝑥𝑒 implies that for 𝑥� = (𝑥�1,⋯ , 𝑥�𝑚) ∈ Ω,  

𝑃{𝑋 = 𝑥�𝑒} = ∏  {𝑒:  𝑥�𝑒=1} 𝑟𝑒 ⋅ ∏  {𝑒:  𝑥�𝑒=0} (1 − 𝑟𝑒).                           (1) 
    The standard estimator of 𝑅𝒦(𝒢) is given by  

𝑅𝒦(𝒢) = 1
𝑁
∑  𝑁
𝑖=1 Φ𝒢

𝒦(𝑋(𝑖)).                         (2) 
 where 𝑋(1), … ,𝑋(𝑁) is a random sequence of independent vectors having the same distribution as 𝑋. 

The variance is given by the unbiased estimate (El Khadiri, 1992):  
𝑉� = 1

𝑁−1
𝑅�𝒦(𝒢)[1 − 𝑅�𝒦(𝒢)].                                    (3) 

The well known drawback of this method is the high number of iterations required to obtain exact estimates when the 
network is highly reliable (which can lead to an exponential run time). Several techniques known as variance reduction 
techniques were proposed to overcome this problem. Among these we cite the antithetic variates method, which offers higher 
efficiency for the estimate without carrying out changes in the number of tests.  
 
3.2.2  Method of antithetic variates 
 

The theoretical study elaborated in (El Khadiri, 1992), allowed to highlight an algorithm that can solve the problem with 
higher efficiency for the estimate, and give lower variance than the one given by the standard method, with the same sample.  

Let 𝑈 be a random variable uniformly distributed in the interval [0,1]. Then, the random variable (1 − 𝑈) is also 
uniformly distributed in the same interval. Let's consider two samples of 𝑁 vectors of independent states and having the same 
distribution as 𝑋 : 𝑋(1)1,𝑋(1)2, … ,𝑋(1)𝑁  and 𝑋(2)1,𝑋(2)2, … ,𝑋(2)𝑁 . The two vectors 𝑋(1)𝑗 ,𝑋(2)𝑗(𝑗 = 1,⋯ ,𝑁)  are 
generated as follow: 

for each link 𝑒𝑖 ∈ ℰ(𝑖 = 1, … ,𝑚), 𝑢 is generated according to the uniform distribution in the interval [0,1],  

𝑋𝑖
(1)𝑗 = �

1 ∶   𝑢  <   𝑟𝑒𝑖  
0 ∶   𝑢  ≥   𝑟𝑒𝑖         and    𝑋𝑖

(2)𝑗 = �
1 ∶   1 − 𝑢  <   𝑟𝑒𝑖  
0 ∶   1 − 𝑢  ≥   𝑟𝑒𝑖  . 

If we denote  
𝑅�𝑗 = 1

2
[Φ𝒢

𝒦(𝑋(1)𝑗) + Φ𝒢
𝒦(𝑋(2)𝑗)]  ,                                                                                

(4) 
 the reliability 𝑅𝒦(𝒢) of the graph 𝒢 will be estimated by :  
𝑅�𝒦(𝒢) = 1

𝑁
∑  𝑁
𝑗=1 𝑅�𝑗 .                                                                                              

(5) 
 The variance of 𝑅�𝒦(𝒢) is given by the following unbiased estimate (El Khadiri, 1992):  
𝑉� = 1

(𝑁−1)
�1
𝑁
∑  𝑁
𝑗=1 𝑅�𝑗2 − [𝑅�𝒦(𝒢)]2�.                                                                               

(6) 
  

 
4. DYNAMIC MODEL 

  
4.1 Description of the model 
 

 Let 𝑋𝑖(𝑡) be the random variable defining the state of the link 𝑒𝑖(𝑖 = 1, … ,𝑚) at time 𝑡.  

𝑋𝑖(𝑡) = �
1  𝑖𝑓  𝑇𝑖   >   𝑡 
0  𝑒𝑙𝑠𝑒,  , where 𝑇𝑖 is the time to failure of the link 𝑒𝑖(𝑖 = 1, … ,𝑚). 

Let Φ𝒢
𝒦(𝑡) be the state of the graph 𝒢 defined by  
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Φ𝒢
𝒦(𝑡) = �

1    𝑖𝑓 𝑡ℎ𝑒𝑔𝑟𝑎𝑝ℎ 𝑑𝑒𝑑𝑢𝑐𝑒𝑑 𝑓 𝑟𝑜𝑚 𝒢 𝑏𝑦 𝑡ℎ𝑒 𝑠𝑢𝑝𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑜𝑓
    𝑡ℎ𝑒 𝑓𝑎𝑖𝑙𝑖𝑛𝑔 𝑙𝑖𝑛𝑘𝑠 𝑖𝑠𝑐 𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡
0    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 

Φ𝒢
𝒦(𝑡) = Φ𝒢

𝒦�𝑋1(𝑡),⋯ ,𝑋𝑚(𝑡)� = �
1  𝑖𝑓  𝑇  >   𝑡; 
0  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,       where 𝑇 is the time to failure of the graph 𝒢. 

 
The 𝒦-terminal reliability of the graph 𝒢 is given by:  

 
𝑅𝒢𝒦(𝑡) = 𝑃(Φ𝒢

𝒦(𝑡) = 1) = 𝑃(𝑇 > 𝑡).                             (7) 
  
4.2 Evaluation by the discrete method 
 

In order to plot the curve of the function 𝑅𝒢𝒦(𝑡) of the graph 𝒢 in the interval [0,𝑎], this interval is subdivided into 
sub-intervals of a very small length ℎ. Then the time instants 𝑡0 = 0, 𝑡1,⋯ , 𝑡𝑘 = 𝑎 are defined such that ℎ = 𝑡𝑗 − 𝑡𝑗−1, 𝑗 =
1,2,⋯ , 𝑘 and one of the above mentioned procedures is called to compute at every time 𝑡 the reliability 𝑅𝒢𝒦(𝑡). So a 
numerical method based on the generalized method of Ahmad can be used to have an approximation of 𝑅𝒢𝒦(𝑡) for each 𝑡.  

 
4.3 Method based on discrete events simulation 
 

This method consists of generating a sample 𝑌1,𝑌2, … ,𝑌𝑁 representing the breakdowns times of the graphs 𝒢1,𝒢2, … ,𝒢𝑁 
identical to the graph 𝒢. This allows building the empirical function of distribution 𝐹𝑁 as follows:  

𝐹𝑁(𝑡) = 1
𝑁
∑  𝑁
𝑖=1 𝟏{𝑌𝑖≤𝑡} = 𝑁(𝑡)

𝑁
,                        (8) 

 where 𝟏{𝑌𝑖≤𝑡} = �
1  𝑖𝑓  𝑌𝑖   ≤   𝑡 
0  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,  and 𝑁(𝑡) stands for the number of broken graphs at time 𝑡. 

The mean time between failures of the network 𝒢 is estimated by the empirical mean value of the variables 
𝑌1,𝑌2, … ,𝑌𝑁: 

𝑀𝑇𝐵𝐹� = 1
𝑁
∑  𝑁
𝑖=1 𝑌𝑖 .         (9) 

 To generate the random variables 𝑌1, … ,𝑌𝑁 , a sample of 𝑁  random vectors 𝑇(𝑖) = (𝑇1
(𝑖), … ,𝑇𝑚

(𝑖)) , (𝑖 = 1, … ,𝑁)  is 
generated, corresponding to the graphs 𝒢1, … ,𝒢𝑁, where 𝑇𝑗

(𝑖)(𝑗 = 1, … ,𝑚) is the random variable equal to the time of the 
breakdown of the link 𝑒𝑗 of the graph 𝒢𝑖. It is generated according to the distribution of 𝑇𝑗 corresponding to the distribution 
of the time to failure of the link 𝑒𝑗 of the graph 𝒢𝑖. 

For each vector 𝑇(𝑖)(𝑖 = 1, … ,𝑁), its elements 𝑇1
(𝑖), … ,𝑇𝑚

(𝑖)  are ordered increasingly. An ordered random vector 
𝑇∗(𝑖) = (𝑇1

∗(𝑖), … ,𝑇𝑚
∗(𝑖))  is thus obtained, where time instants 𝑇1

∗(𝑖), … ,𝑇𝑚
∗(𝑖)  correspond to the links 𝑒1, 𝑒2, … , 𝑒𝑚 

respectively.  
When a breakdown event (of a link of some graph) occurs, a new graph is built by omitting the broken link. During the 

time instants 𝑇1
∗(𝑖), … ,𝑇𝑚

∗(𝑖)  corresponding to time instants of breakdowns of the links 𝑒1, 𝑒2, … , 𝑒𝑚  of the graph 𝒢𝑖 , 
(𝑖 = 1, … ,𝑁), the graphs 𝒢𝑖

∗(1), … ,𝒢𝑖
∗(𝑘), (1 𝑘 𝑚) are built one by one, by testing their connectedness, until a graph 𝒢𝑖

∗(𝑘) 
that is not connected is obtained. This leads to the realization of the breakdown event of the graph 𝒢𝑖. 
 
4.3.1  Test of connectedness of a graph 
 

To test whether some nodes of a graph 𝒢 are connected, we perform a Depth First Search (DFS) on the graph 𝒢, using 
the procedure 𝐷𝐹𝑆( Appendix). The function presented below is boolean. It is true if the selected nodes of 𝒢 are connected 
and false otherwise.  

 
5. APPLICATION TO THE TELECOMMUNICATIONS NETWORK OF BEJAIA DISTRICT 

 
5.1 Modelling 
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The first stage of the modelling process consists of substituting the studied system by a mathematical model that can be solved 
either by analytical methods or by simulation.  

The modelling problem is considered by referring to an undirected graph. A set 𝒱 of 𝑛 nodes and a set ℰ of 𝑚 links 
are considered. The telecommunication network of Bejaia district (Figure 1.) consists of 43 terminals (|𝒱| = 43) and 43 
transmission links (|ℰ| = 43).  

Figure 1. Topology of the Bejaia district telecommunication network 
 

    
 
5.1.1 Data fitting 
 

Having data on times of the inter-failures of the cables of transmission, we have selected the Weibull model with 
parameters 𝛽 = 0.77 and 𝛾 = 79.71, this choice was validated by the Kolmogorov-Smirnov test and the Chi-square test, with 
a level of significance 𝛼 = 0.05. Consequently, the cumulative distribution function of the inter-failures of the transmission 
wires is given by  

𝐹(𝑡) = 1 − 𝑅(𝑡) = 1 − exp − ( 𝑡
79.71

)0.77, 𝑡 > 0.                     (10) 
 
5.2  Reliability indices evaluation 
 

The previously presented methods are applied to the transmission network of Bejaia district. In the discrete case, we 
estimate 𝑅𝒦(𝒢), in the dynamic case we estimate the mean time between failures (𝑀𝑇𝐵𝐹) and 𝑅𝒢𝒦(𝑡). 

 
5.2.1  Discrete model 
 
The three most studied cases in the literature have been considered:   

    • Source-terminal reliability (2-terminal) 𝑅𝑠𝑡(𝒢) when 𝒦 = {𝑠, 𝑡},  
    • 𝒦-terminal reliability,  
    • All-terminal reliability when 𝒦 = 𝒱.  

 The number of simulation 𝑁 is fixed at 200 (to agree with the standard of Monte Carlo simulation results) for 
various values of 𝑟 such that 𝑟𝑒𝑖 = 𝑟, (𝑖 = 1,⋯ ,𝑚). Our results are presented in the Table 1.  

 
  Table 1. Estimation results of 𝑅𝒦(𝒢)   

 
  Elementary reliability 𝑟   0.90  0.95  0.98  0.99  0.995  0.999  

 𝒦 = {4,6}  Crude  0.8000   0.9050  0.9600  0.9800  0.9900  0.9950 
   Antithetic  0.7970   0.8975  0.9590  0.9805  0.9905   0.9975  
  Ahmad Method  0.7946  0.8981  0.9596  0.9799  0.9899  0.9979  

𝒦 = {4,5,14,15}  Crude  0.6450   0.7900   0.9450  0.9450   0.9850  0.9950  
   Antithetic  0.6350   0.8100  0.9225  0.9600  0.9800  1  
  Ahmad Method  0.6436  0.8105   0.9216   0.9604  0.9801  0.9960  

 𝒦 = 𝒱  Crude   0.020   0.1400   0.4650   0.7100   0.8000   0.9595  
   Antithetic 0.0150   0.1275   0.4425   0.6700   0.8175   0.9600 
  Ahmad Method  0.0143   0.1275  0.4451   0.6687  0.8182   0.9607  
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Figures 2 to 4 represent the evolution of reliability 𝑅𝒦(𝒢) versus the elementary reliability 𝑟, evaluated by the three 
methods (exact, crude simulation and antithetic variates) according to the three previously treated cases: 𝒦 = {4,6}, 𝒦 =
{4,5,14,15} , 𝒦 = 𝒱 respectively.  
   

Figure 2. Evolution of 𝑅{4,6}(𝒢) versus 𝑟𝑒𝑖            Figure 3. Evolution of 𝑅{4,5,14,15}(𝒢) versus 𝑟𝑒𝑖   
 

 
 

 
Figure 4. Evolution of 𝑅{𝒦=𝒱} versus 𝑟𝑒𝑖 

  
      

It is observed that the reliability curves related to the three methods show an increasing function of elementary reliability 
𝑟𝑒𝑖 . It is also to be noted that the results obtained by using the two methods of crude simulation and antithetic variates agree 
with those derived using the generalized exact method of Ahmad, confirming the results of the simulation methods. 
Furthermore, we confirm that the antithetic variates method allows to obtain a higher performance compared to the Monte 
Carlo method in terms of variance reduction. 

  
Variance of the estimates. Table 2 summarizes the variance of the estimators for the reliability measurement 𝑅𝒦(𝒢) for the 
graph 𝒢, obtained by employing the two simulation methods, and this for the previous values of 𝑟. 

 
 Table 2. Variance estimates of 𝑅𝒦(𝒢) in the simulation methods  

  
  Elementary reliability r   0.90  0.95  0.98  0.99  0.995  0.999  
 𝒦 = {4,6}   Crude  0.00080  0.00043  0.00019  0.00009  0.00004  0.00002  

  Antithetic  0.00035  0.00021  0.00009  0.00004  0.00002  0.00000  
 𝒦 = {4,5,14,15}  Crude   0.00115  0.00083  0.00026  0.00026  0.00007  0.00002  

  Antithetic   0.00053  0.00037  0.00017  0.00010  0.00004  0.00000  
 𝒦 = 𝒱  Crude   0.00009  0.00060  0.00125  0.00103  0.00080  0.00019  

  Antithetic  0.00003  0.00028  0.00060  0.00058  0.00034  0.00009  
   

We easily remark that the variance estimates obtained by the use of antithetic variates simulation are smaller than those 
obtained by the crude simulation.  
 
Sensitivity analysis of simulation methods. The run time of the two types of simulation methods in the case where 𝒦 = 𝒱 
as function of the iteration number of simulation is presented. The variance of the estimates for the simulation methods as 
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function of the run time is also given. The elementary reliability is fixed at 𝑟𝑒𝑖 = 𝑟 = 0.9, the methods were implemented on a 
2.00MHz Pentium(R) processor. Table 3. summarizes the obtained results. 
 

 Table 3. Run time and variance of the estimates for the Simulation methods  
function of the number of simulations 𝑁, where 𝒦 = 𝒱  

 
   Run time (second) Variance of the estimates 

Number of iterations crude Antithetic Crude Antithetic 
100 1 2 0.0014 2.5× 10−5 
200 2 5 9× 10−5 7.2× 10−6 
300 4 8 7.62× 10−6 6.4× 10−6 
400 5 11 5.6× 10−6 4.56× 10−6 
500 7 14 5.4× 10−6 3.9× 10−7 
600 8 17 2.41× 10−6 1.11× 10−7 
700 9 20 2.11× 10−6 9.96× 10−8 
800 11 23 1.07× 10−6 9.78× 10−8 
900 12 25 8.8× 10−7 7.6× 10−8 
1000 13 28 8.1× 10−7 6.48× 10−8 
1500 20 43 8.6× 10−7 7.4× 10−8 
2000 27 57 6.7× 10−7 4.98× 10−8 

  
It can easily be seen from these results, that the run time for each method is as a linear function of the number of 

simulations, although there exists a small difference in favor of the crude Monte Carlo simulation method. But looking at the 
variance of the estimates, the antithetic variates method is more advantageous because it provides a best estimate.  
 
5.2.2 Dynamic model 
 

In order to plot the curve of the function 𝑅𝒢𝒦(𝑡), we quantify the reliability of the equipment for different instants, by 
determining the distribution of the inter-failures of the transmission cables. 
    To this end, the methods previously explained are implemented. Let us recall that the first is the generalized method of 
Ahmad, while the second is a discrete events simulation procedure. By specifying the values of the parameters of the methods 
for which the interval of time, the moving step and sample size of simulation are 𝐼 = [0,100], ℎ = 0.05 and 𝑁 = 100 
respectively, as well as the distribution of the inter-failures of the transmission cables, the curve of the function 𝑅𝒢𝒦(𝑡) is 
plotted with the restriction to the case of the evaluation of all-terminals reliability 𝑅𝒢(𝑡) of the network. Figure 5. (where DM: 
G.M.A means dynamic model: generalized method of Ahmad and DM: D.E.S.M means dynamic model: discrete event 
simulation methods) shows the variation of reliability in terms of time, evaluated by the two above mentioned methods.  

  
Figure 5. Evolution of 𝑅𝒢(𝑡) as a function of 𝑡 

 
 

    
By observing the evolution of the two curves in 𝑅𝒢(𝑡) of the Fig.5, we remarque that the curve obtained by simulation is 

close to that derived using the numerical method, confirming, thus, the simulation results. The plots exhibit a rapidly decreasing 
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shape with time. That means, that the network is in a phase of ageing.  

The value of the mean time between failures of the network (𝑀𝑇𝐵𝐹) is also estimated by using the formula: 𝑀𝑇𝐵𝐹� =
1
𝑁
∑  𝑁
𝑖=1 𝑌𝑖 = 1.018 𝑑𝑎𝑦𝑠, where 𝑌𝑖 are given by the generated sample procedure. 

 
6. CONCLUSION 

 
The Monte Carlo evaluation of the network reliability measures appears to be very useful in the analysis of communication 

systems since the exact computation of these measures is extremely time consuming. Even relatively small networks (say, with 
less than one hundred lines) are often impossible to evaluate exactly. 
    In this paper, two techniques for evaluating usual network reliability measures are presented. A feature of these methods is 
that their time complexity is sensitive to the number of simulations done, and the variance of the estimates 𝑅𝓀(𝐺) is influenced 
by the reliability of the component of the network.  
    The application of these methods shows clearly the convergence of the results. The simulation techniques give solutions 
often close to the exact method results. These constitute then an alternative to the exact approach. This is the result reached in 
the case of the discrete and dynamic model. These results show the susceptibility of the network to experience failures having 
consequences penalizing the subscribers (Quality of Service) and the firm (economic).  
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APPENDIX 
Procedure Depth First Search 
The procedure 𝐷𝐹𝑆 is defined as follows :  
Procedure 𝑫𝑭𝑺(𝓖, 𝒔,𝑴𝒂𝒓𝒌) 
Begin   𝑍: = 𝑁𝑖𝑙; 
Initialize 𝑀𝑎𝑟𝑘 to false;  
 𝑀𝑎𝑟𝑘[𝑠]: = 𝒕𝒓𝒖𝒆;  
 push(𝑍, 𝑠);  
While 𝑍 <> 𝑵𝒊𝒍 do   
𝑥: = 𝑇𝑜𝑝(𝑍);      " 𝑇𝑜𝑝(𝑍) is the element at the top of the stack 𝑍 "  
 Let 𝑦 be an unspecified node adjacent to 𝑥 non marked. 
"𝑦 = 𝑛𝑖𝑙 if there is no adjacent node to 𝑥 non marked" 
 (𝑦 ≠ 𝑛𝑖𝑙)  then 
 push(𝑍,𝑦); 
 𝑴𝒂𝒓𝒌[𝑦]: = 𝑡𝑟𝑢𝑒;  else  pop(𝑍, 𝑥);   End if. 
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