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AbstractIn portfolio selection problem, the investor usually makes his portfolio decision according to his experience and his 
economic acquaintance. So, deterministic portfolio selection is not a good choice for the investor. In most of the recent works 
on this problem, fuzzy set theory is widely used to model the problem in uncertain environment. Since portfolio returns are in 
general asymmetric, in addition to the general concept of considering mean and variance, the third moment skewness should be 
considered for a better decision making. This paper applies the concept of weighted possibilistic moments of fuzzy numbers to 
extend the classical mean- variance portfolio selection model under the consideration of skewness. Return ratios are considered 
as fuzzy numbers and its possibilistic moments are evaluated to formulate the models. In order to solve the models, fuzzy 
simulation (FS) and elitist genetic algorithm (EGA) are integrated to produce more powerful and effective hybrid intelligent 
algorithm (HIA). Finally, our approaches are tested on a set of stock data from Bombay Stock Exchange (BSE). 
Keywords Investment analysis, portfolio selection, mean-variance-skewness model, fuzzy numbers, weighted possibilistic 
moments, hybrid intelligent algorithm. 
 

 

1. INTRODUCTION 

Although the foundation of modern mathematical models in economics can be traced back to Bachelier's (1900) 
dissertation on the theory of speculation, without hesitation, the work of Markowitz (1952) in portfolio selection has been the 
most impact-making development in mathematical finance. Most of the reasonable works on portfolio selection has been done 
based on only the first two moments of return distribution. The first order moment about the origin, i.e., the mean, quantifies 
the return and the second order moment about the mean, i.e., the variance, quantifies the risk. Now the third order moment 
about the mean of a return distribution i.e., skewness measures the asymmetry of the distribution. A natural extension of the 
mean- variance model is to add the skewness as a factor for consideration in portfolio management. One interested in 
considering skewness prefers a portfolio with a higher probability of large payoffs when mean and variance remain same. The 
importance of higher order moments in portfolio selection was suggested by Samuelson (1958). But consideration of skewness 
has been started by Lai (1991) and is continued by Konno and Shirakawa (1993), Konno and Suzuki (1995), Chunhachinda et al. 
(1997), Prakash et al. (2003), Briec et al. (2007), Yu et al. (2008) and others.  

All the above literatures assume that the security returns are random variables. There are many non-stochastic factors that 
affect stock markets. Dealing those factors with probability approaches is inappropriate. By incurring fuzzy approaches 
quantitative analysis, qualitative analysis, experts' knowledge and investors' subjective opinions can be better integrated into a 
portfolio selection model. Ramaswamy (1998), Inuiguchi and Ramik (2000), Vercher et al. (2007), Li et al. (2010), Bhattacharyya et 
al. (2009, 2011), Bhattacharyya and Kar (2011) and others have made significant contributions to model fuzzy portfolio selection 
problem.  
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In possibilistic portfolio selection models two type of approaches are noticed. The return of a security is considered either 
as a possibilistic variable or as a fuzzy number. In the later case, the possibilistic moments of the fuzzy numbers are considered. 
Possibilistic portfolio models integrate the past security data and experts' judgment to catch variations of stock markets more 
plausibly. Tanaka and Guo (1999), Tanaka et al. (2000) propose two kinds of portfolio selection models by utilizing fuzzy 
probabilities and exponential possibility distributions, respectively. Inuiguchi and Tanino (2000) introduce a possibilistic 
programming approach to the portfolio selection problem under the minimax regret criterion. Ida (2004) investigates portfolio 
selection problem with interval and fuzzy coefficients, two kinds of efficient solutions are introduced: possibly efficient solution 
as an optimistic solution, necessity efficient solution as a pessimistic solution. Carlsson and Fuller (2001) introduce a possibilistic 
approach for selecting portfolios with the highest utility value under the assumption that the returns of assets are trapezoidal 
fuzzy numbers. Wang et al. (2005) and Zhang and Wang (2005) discuss the general weighted possibilistic portfolio selection 
problems. Zhang et al. (2007) assume that the rates of return of assets can be expressed by possibility distribution. They propose 
two types of portfolio selection models based on upper and lower possibilistic means and possibilistic variances and introduce 
the notions of lower and upper possibilistic efficient portfolios. Li and Xu (2007) deal with a possibilistic portfolio selection 
problem with interval center values. By using modality approach and goal attainment approach they convert it into a nonlinear 
goal programming problem. 

Though a considerable number of research papers have been published for portfolio selection problem in fuzzy 
environment, no one has considered weighted possibilistic mean- variance- skewness model for fuzzy portfolio selection. In this 
paper, the returns of security are considered as fuzzy numbers. The concept of weighted possibilistic moments of fuzzy numbers 
[Saeidifar and Pasha (2009)] are used to obtain the possibilistic mean, variance and skewness of fuzzy numbers in section 2. In 
section 3, these results are employed to constitute the weighted possibilistic mean- variance- skewness models for portfolio 
selection problem. Four different models are constructed for fuzzy portfolio optimization. The models have the three estimators: 
mean, variance and skewness. None of the estimators are new. But the approach to find out the values of the estimators by 
weighted possibilistic moments is a novice one. As discussed earlier, attempts to use different approaches to find possibilistic 
moments have been noticed in the literatures of portfolio selection problem. Points to note are: 

1. in these attempts, none has considered skewness.  
2. no attempt with weighted possibilistic moments has been noticed. 
In section 4, in order to solve the models under fuzzy environment, fuzzy simulation (FS) and elitist genetic algorithm 

(EGA) are integrated to produce more powerful and effective hybrid intelligent algorithm (HIA). In section 5, share price data 
from Bombay Stock Exchange (BSE), India are used to illustrate the effectiveness of the algorithm and finally in section 6 some 
conclusions are specified. 

 
2. POSSIBILISTIC MOMENTS OF FUZZY NUMBERS 

In this section we will first discuss some basic concepts and theorems on possibilistic moments of fuzzy numbers [cf. 
Thavaneswaran et al. (2009), Saeidifar and Pasha (2009), Carlson et al. (2001), Fullér et al. (2003)]. These are crucial for the 
construction of this paper. After that, some theorems are developed. 
 

Definition 2.1 A fuzzy number A  in parametric form is a pair [ a(α ), a(α )]  of functions a(α ) and  a(α ) , 0 ≤ α ≤ 1 which 
satisfies the following requirements. 

a) a(α ) is a bounded increasing left continuous function; 
b) a(α ) is a bounded decreasing right continuous function; 
c) a(α )  a(α ), 0 α 1.≤ ≤ ≤   

A popular fuzzy number A  = (a, b, c, d) [called trapezoidal fuzzy number] with membership function μA( x )


is defined as 
follows: 

A

x - a     x  [a, b]
b - a
1          x [b, c]

μ ( x )
d - x     x [ c, d ]
d - c
0          otherwise.

 ∈


∈= 
 ∈
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Its α-level sets are α[ A]  = [ a(α ), a(α )]  = [a + (b - a)α, d - (d - c)α ].  

Note that if b = c, then Aμ ( x )


is membership function of triangular fuzzy number A  = (a, b, d). 
 
Definition 2.2 Let Ω be a nonempty set and P(Ω) is the power set of Ω. A function POS is called a possibility measure if 

i) POS{ Ω} = 1, 
ii) POS{Φ} = 0, 
iii) i ii i

POS{ A } sup  POS{A },∪ = for any collection i{A } in P(Ω). 

The triplet (Ω, P(Ω), POS) is called a possibility space. 
Definition 2.3 A fuzzy variable r is defined as a function from a possibility space (Ω, P(Ω), POS) to the set of real numbers .ℜ  
Definition 2.4 Let  α[ A]  = [ a(α ), a(α )]  be the α cut of a fuzzy number A  and f(α) be a weighted function. Also let CL ≤ 

CU   .∈ ℜ  Then the nth weighted double possibilistic moments of fuzzy number A  about points CL, CU are defined as: 
1

( C , C ) n nL U
n L U

0

1M ( A ) = f (α )[(  a(α ) C ) (  a(α ) C ) ]dα, n = 1, 2, 3, .....
2

− + −∫  

Double moments explain the variation of a fuzzy number with respect to points CL and CU.  These moments are independent 
with respect to the points CL, CU.  So the nth weighted double possibilistic moments of fuzzy number A  about points 

+
f fm ( A ), m ( A )−
  from the nearest weighted interval +

f f fNWPI ( A )=[m ( A ), m ( A )]−
   are defined as: 

1+( m ( A ), m ( A ))f n + nf
n f f

0

1M ( A ) = f (α )[(  a(α ) m ( A )) (  a(α ) m ( A ) ) ]dα, n = 1, 2, 3, .....
2

−
−− + −∫

 

    

+( m ( A ), m ( A ))f f
nM ( A )

−
 

  explains the variation of a fuzzy number A  with respect to two important points +
f fm ( A ), m ( A )−
  from 

support function.  

If +
f f fm ( A )  m ( A ) = m (A ),− =    then m (A )f

n nM ( A )  M ( A )=


   is called the nth weighted possibilistic moment about the 

possibilistic mean value of fuzzy number A.   

If f(α) = 2α, then nM ( A ) are called the possibilistic moments about the possibilistic mean value of fuzzy number A  and it is as: 
1

n n
n

0

M ( A ) = α[(  a(α ) m( A )) (  a(α ) m( A ) ) ]dα;  n = 1, 2, 3, ....− + −∫    

where m( A )  is called weighted possibilistic mean value of fuzzy number A  so that  
1

0

m( A ) = α[(  a(α ) a(α )]dα.+∫  

Definition 2.5 The second possibilistic moment 2M ( A ) is called the possibilistic variance of fuzzy number A  and it is defined 
as:  

1
2 2 2

2
0

M ( A ) σ  = Var( A ) = α[(  a(α ) m( A )) (  a(α ) m( A ) ) ]dα .= − + −∫     

Definition 2.6 Let 3M ( A ) be the possibilistic third order moment about the possibilistic mean. Then the weighted possibilistic 

skewness (WPS) of fuzzy number A  is defined as follows: 

3
3

2

M ( A ) 
 WPS(A ) = .

(  M ( A ) )







 

The WPS of a fuzzy number shows the weight of fuzzy number at the left or right sides of the mean value.  
Note that a fuzzy number is said to be symmetric if it can be folded along an axis so that the two sides coincide with each other. 
A fuzzy number that lacks the symmetry with respect to a vertical axis is to be skewed.  
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Theorem 2.7 Let A = (a, b, c, d) be a trapezoidal fuzzy number. Then the possibilistic mean, variance and skewness of  A are 
respectively given by 

2 2 2 2

2 2 2 2 3/ 2 3 3

3

1WPM [  a + 2(b + c) + d],
6
1WPV [  2( a  + d ) + 5( b  + c ) + 2( ab + cd  da)  4(ac + bd) 8bc ],

36
1WPS [2( a  + d ) + 5( b  + c ) + 2( ab + cd  da)  4(ac + bd) 8bc ] [19( a d )
5

               26( b  +

−

=

= − − −

= − − − +

+ 3 2 2 2 2

2 2 2 2 2 2 2 2

 c ) 15( a d ad ) 30( b c bc ) 60( a d )bc 30( b c )ad

              12( a b cd ) 30( a c bd ) 33( ab c d ) 15( a c b d )].

− + − + + + + +

− + − + − + − +
 Proof:  Let A  = (a, b, c, d) be a trapezoidal fuzzy number. 

 Its α -level sets are α[ A]  = [ a(α ), a(α )]  = [ a + (b - a)α, d - (d - c)α ].

 
The weighted possibilistic mean value of the fuzzy number A  is   

α α α α α α α α

α α α

1 1

0 0
1

2

0

WPM m( A ) = [(  a( ) a( )]d  = [{  a + (b - a) } { d - (d - c) }]d

1                        = [  (a+d)  + (b + c - a - d) }]d  = [  a + 2(b + c) + d].
6

= + +∫ ∫

∫



 

The weighted possibilistic variance of the fuzzy number A  is   
1

2 2
2

0
1

2 2

0

2 2 2 2

WPV M ( A ) = α[(  a(α ) m( A )) (  a(α ) m( A ) ) ]dα  

1 1           = α[(  [a + (b - a)α ] ( [  a + 2(b + c) + d] )) (  [d - (d - c)α ] [  a + 2(b + c) + d] ) ) ]dα
6 6

1          = [  2( a  + d ) + 5( b  + c ) 
36

= − + −

− + −

∫

∫

  

+ 2( ab + cd  da)  4(ac + bd) 8bc ].− − −

 

The third possibilistic moment of the fuzzy number A is   
1

3 3
3

0
1

3 3

0

3 3 3 3 2

M ( A ) = α[(  a(α ) m( A )) (  a(α ) m( A ) ) ]dα

1 1           = α[(  [a + (b - a)α ] ( [  a + 2(b + c) + d] )) (  [d - (d - c)α ] [  a + 2(b + c) + d] ) ) ]dα
6 6

1          = [  19( a d ) 26( b  + c ) 15( a d a
1080

− + −

− + −

+ + − +

∫

∫

  

2 2 2

2 2 2 2 2 2 2 2

d ) 30( b c bc ) 60( a d )bc 30( b c )ad

             12( a b cd ) 30( a c bd ) 33( ab c d ) 15( a c b d )].

− + + + + +

− + − + − + − +

 

Therefore the weighted possibilistic skewness of the trapezoidal fuzzy number A  is obtained by 

3
3

2

M ( A ) 
 WPS(A ) = .

(  M ( A ) )







 

Corollary 2.8 Let A  = (a, b, c) be a triangular fuzzy number. Then the weighted possibilistic mean, variance and skewness of  
A  are respectively given by 



48 

Bhattacharyya and Kar: Possibilistic mean- variance- skewness portfolio selection models 
IJOR Vol. 8, No. 3, 44−56 (2011) 
 

2 2 2

3 3 3 2 2 2 2 2

2 2 2 3

1WPM [  a + 4b + c],
6
1WPV [   a + b + c ab bc ca ],

18
19( a  c ) 8b 42b( a  c ) 12b ( a  c ) 15( a c  ac )  60abcWPS .

10 2( [   a +  b +  c  ab  bc  ca ] )

=

= − − −

+ − − + + + − + +
=

− − −

 

Proof: It is obvious from theorem 2.7.    
Theorem 2.9 Let A  be a fuzzy number having the membership function 2 2

iAμ ( x ) = exp[ (x  θ ) 2σ ],− −


where θ and σ are 

parameters to be specified. Then the possibilistic mean, variance and skewness of A are respectively    and 2θ , σ 0.  

Proof: As A  is a fuzzy number having the membership function 2 2
iAμ ( x ) = exp[ (x  θ ) 2σ ],− −



 its α-level sets are  

α[ A]  = [ a(α ), a(α )]  = [ θ   σ  2.ln( α ), θ  + σ  2.ln( α ) ].− − − − −  

The weighted possibilistic mean value of the fuzzy number A  is   
1

0
1 1

0 0

WPM m( A ) = α[(  a(α ) a(α )]dα

         = α[{  θ   σ  2.ln( α ) } {θ   σ  2.ln( α ) }]dα = α[  2θ ]dα  θ.

= +

− − − + + − − =

∫

∫ ∫



 

The weighted possibilistic variance of the fuzzy number A  is   
1

2 2
2

0
1

2 2 2

0

WPV M ( A ) = α[(  a(α ) m( A )) (  a(α ) m( A ) ) ]dα  

           = α[(  [θ   σ  2.ln( α ) ] θ ) (  [θ   σ  2.ln( α ) ] θ ) ) ]dα = σ .

= − + −

− − − − + + − − −

∫

∫

  

 

The third possibilistic moment of the fuzzy number A  is   
1

3 3
3

0
1

3 3

0

M ( A ) = α[(  a(α ) m( A )) (  a(α ) m( A ) ) ]dα  

           = α[(  [θ   σ  2.ln( α ) ] θ ) (  [θ   σ  2.ln( α ) ] θ ) ) ]dα = 0.

− + −

− − − − + + − − −

∫

∫

  

 

Therefore the weighted possibilistic skewness of the trapezoidal fuzzy number A  is obtained by 

3
3

2

M ( A ) 
 WPS(A ) = 0.

(  M ( A ) )
=







 
 

3. WEIGHTED POSSIBILISTIC MEAN – VARIANCE – SKEWNESS PORTFOLIO SELECTION 
MODELS 

Let ir  be a fuzzy number representing the return of the ith security. Let ix be the portion of the total capital invested in 

security i, i = 1, 2, …, n. Then i i i ir  = ( p  + d p ) p ,′ − where pi is the closing price of the ith security at present, p′ is the 
estimated closing price in the next year and di is the estimated dividends in the next year.   

Now when minimum expected return and maximum risk are known, the investor will prefer a portfolio with large skewness. 
It can be modeled as: 



49 

Bhattacharyya and Kar: Possibilistic mean- variance- skewness portfolio selection models 
IJOR Vol. 8, No. 3, 44−56 (2011) 
 

1 1 2 2

1 1 2 2

1 1 2 2

1 2

 [ .... ]

  

            [ .... ]  

            [ .... ]  

            ....   1

              0,    1,  2,  ....,  .

n n

n n

n n

n

i

maximize S r x r x r x

subject to

E r x r x r x

V r x r x r x

x x x

x i n

α

γ

+ + +

+ + + ≥

+ + + ≤

+ + + =

≥ =









  

  

  



                                                             (1) 

The first constraint ensures that the expected return is not less than α, and the second constraint ensures that the risk dose not 
exceed some given level γ, the investor can bear. The last two constraints assure that all the capital will be invested to n securities 
and short selling is not allowed.  
When expected return and skewness are both not less than some given target values, the investor would aim to minimize the risk. 
This can be modeled as: 

1 1 2 2

1 1 2 2

1 1 2 2

1 2

 [ .... ]

    

                [ .... ]  

                [ .... ] 

                ....   1

                  0,    1,  

n n

n n

n n

n

i

minimize V r x r x r x

subject to

E r x r x r x

S r x r x r x

x x x

x i

α

β

+ + +

+ + + ≥

+ + + ≥

+ + + =

≥ =

  

  

  

2,  ....,   .n











                                                             (2) 

When minimum skewness and maximum risk are known, the investor would aim to maximize the expected return. This can be 
modeled as:  

1 1 2 2

1 1 2 2

1 1 2 2

1 2

 [ .... ]

    

              [ .... ]  

               [ .... ] 

              ....   1

                0,    1,  2,  ....

n n

n n

n n

n

i

maximize E r x r x r x

subject to

V r x r x r x

S r x r x r x

x x x

x i

γ

β

+ + +

+ + + ≤

+ + + ≥

+ + + =

≥ =

  

  

  

,  .n











                                                             (3) 

Finally all the three models can be composed together to form the following multi objective non-linear programming problem as: 

1 1 2 2

1 1 2 2

1 1 2 2

1 2

 [ .... ]

 [ .... ]

 [ .... ]  

   

            ....   1

              0,    1,  2,  ....,  .

n n

n n

n n

n

i

maximize E r x r x r x

minimize V r x r x r x

maximize S r x r x r x

subject to

x x x

x i n

+ + +

+ + +

+ + +

+ + + =

≥ =











  

  

  

                                                             (4) 

Note that when the membership functions of ir are all symmetric, 1 1 2 2 n nS [r x r x .... r x ] 0+ + + =    for all ix ≥ 0, i = 1, 2, 3, …, 
n. 
Theorem 3.1 Suppose i i i i ir  = (a , b , c , d ) are independent trapezoidal fuzzy numbers. Then model (3) generates the 
deterministic programming problem model (5). 
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( )

( ) ( ) ( ) ( )
( )( ) ( )

  1   1   1   1

2 2 2 2n n n n

i i i i i i i i
 = 1  = 1  = 1  = 1

n n n

i i i i i i i i
 = 1  = 1  = 1

1
   2   

6

    

  2 a x  + d x  + 5 b x  + c x

 + 2 a x b x  +  c x d x

n n n n

i i i i i i i i
i i i i

i i i i

i i i

maximize a x b x c x d x

subject to
= = = =

+ + + 
  

   
   
   

∑ ∑ ∑ ∑

∑ ∑ ∑ ∑

∑ ∑ ∑ ( ) ( )( )( )
( )( ) ( )( )( ) ( )( )

( ) ( ) ( ) ( )

n n n

i i i i
 = 1  = 1  = 1

n n n n n n

i i i i i i i i i i i i
 = 1  = 1  = 1  = 1  = 1  = 1

3 3 3 3n n n n

i i i i i i i i i i
 = 1  = 1  = 1  = 1  = 

  d x a x

   - 4 a x c x  +  b x d x  - 8 b x c x   36

  

19 a x d x 26 b x  + c x 15 a x

i i i

i i i i i i

i i i i i

γ

−

≤

+ + −
   
   
   

∑ ∑ ∑

∑ ∑ ∑ ∑ ∑ ∑

∑ ∑ ∑ ∑ ( ) ( ) ( )( )
( ) ( ) ( )( ) ( ) ( )( )( )( )
( ) ( )( )( )( )( )

2 2n n n n

i i i i i i
1  = 1  = 1  = 1

2 2n n n n n n n n

i i i i i i i i i i i i i i i i
 = 1  = 1  = 1  = 1  = 1  = 1  = 1  = 1

n n n n

i i i i i i i i
 = 1  = 1  = 1  = 1

d x a x d x

30 b x c x b x c x 60 a x d x b x c x

30 b x c x a x d x 12

i i i

i i i i i i i i

i i i i

+

− + + +

+ + −

 
 
 

 
 
 

∑ ∑ ∑ ∑

∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑

∑ ∑ ∑ ∑ ( ) ( ) ( )( )
( ) ( ) ( )( ) ( ) ( ) ( )( )
( ) ( )

2 2n n n n

i i i i i i i i
 = 1  = 1  = 1  = 1

2 2 2 2n n n n n n n n

i i i i i i i i i i i i i i i i
 = 1  = 1  = 1  = 1  = 1  = 1  = 1  = 1

2n n

i i i i i i
 = 1  = 1  = 

a x b x c x d x

30 a x c x b x d x 33 b x a x d x c x

15 a x c x b x

i i i i

i i i i i i i i

i i i

+

− + − +

− +

 
 
 

   
   
   

∑ ∑ ∑ ∑

∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑

∑ ∑ ( )( ) ( ) ( )
( ) ( ) ( )( ) ( )( ) ( )( )( )
( )( )

2 2 2n n n n

i i i i i i
1  = 1  = 1  = 1

2 2n n n n n n n n

i i i i i i i i i i i i i i i i
 = 1  = 1  = 1  = 1  = 1  = 1  = 1  = 1

n n

i i i i
 = 1  = 1

d x  5 {2 a x  + d x

+ 5 b x  + c x  + 2 a x b x  + c x d x  d x a x

- 4 a x c x  + b

i i i

i i i i i i i i

i i

β≥

−

   
   
   
 
 
 

∑ ∑ ∑ ∑

∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑

∑ ∑ ( )( )( ) ( )( )n n n n 3 / 2

i i i i i i i i
 = 1  = 1  = 1  = 1

1 2

x d x 8 b x c x

 

  ....  = 1

    0, i = 1, 2, ...., n.

}
i i i i

n

i

x x x

x

−

+ + +

≥











































∑ ∑ ∑ ∑
              (5) 

Proof: Since i i i i ir  = (a , b , c , d ) are trapezoidal fuzzy numbers, by Extension Principle of Zadeh (1978) it follows that    

n n n n

1 1 2 2 n n i i i i i i i i
i  = 1 i = 1 i = 1 i = 1

r x r x .... r x  =  a x  ,  b x  ,  c x  ,  d x ,
 

+ + +   
 
∑ ∑ ∑ ∑  

 
which is also a trapezoidal fuzzy number. Combining this with the results obtained in theorem 2.7, we are with the theorem. 

Theorem 3.2 Suppose i i i i ir  = (a , b , c , d ) are independent trapezoidal fuzzy numbers. Then model (3.4) generates the multi-

objective programming problem model (6). 
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( )
( ) ( ) ( ) ( )

( )( )

n n n n

i i i i i i i i
 = 1  = 1  = 1  = 1

2 2 2 2n n n n

i i i i i i i i
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Note that models (1) and (2) can be constructed similarly. 

 

4. HYBRID INTELLIGENT ALGORITHM 

Genetic algorithms (GAs) are stochastic search methods based on the principles of natural genetic systems. They perform a 
multidimensional search in providing an optimal solution for evaluation function of an optimization problem. Since Holland 
(1975) first proposed it, genetic algorithm has been widely studied, experimented and applied in many fields like operations 
research, finance, industrial engineering, VLSI design, pattern recognition, image processing etc.  

While solving an optimization problem using genetic algorithms, each solution is coded as a string of finite length over a 
finite alphabet. Each string is considered as individual. A collection of M (finite) such individual is called a population. Genetic 
algorithms start with a randomly generated population of size M. In each of the iterations a new population of the same size is 
generated using three basic operations on the individuals of the population. The operations are selection, crossing over and 
mutation. The new population obtained after selection, cross over and mutation is then used to generate another population. 
The number of possible population is always finite since the alphabet is a finite set and M is always finite. If the knowledge 
about the best string is preserved within the population, such a model is called a genetic algorithm with an elitist model (EGA). 
An EGA converges to the global solution with any choice of initial population [cf. Bhandari et al., 1996]. Integration of fuzzy 
simulation into GA has been introduced in detail in Huang (2006).  

To find the optimal portfolio, we integrate fuzzy simulation into the EGA. Here, we summarize the hybrid intelligent 
algorithm as follows: 
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1. In the GA, a solution x = (x1, x2, . . . , xn ) is represented by the chromosome C = (c1, c2 , . . . , cn ), where the genes c1, 
c2 , . . . , cn are in the interval [0, 1]. The matching between the solution and the chromosome is through 

i i 1 2 nx c ( c c .... c ),= + + +  i = 1, 2, . . . , n, which ensures that x1 + x2 +….. + xn = 1 always holds. Randomly 
generate a point C from the hypercube [0, 1]n. Use fuzzy simulation to calculate the values of the objective function 
F(x). Then check the feasibility of the chromosomes. The chromosome that satisfies the constraints of the model is 
feasible. Take the feasible chromosomes as the initial population. Generate an initial population Q of size M. 

2. Calculate the objective values for all chromosomes by fuzzy simulation. Then, give the rank order of the chromosomes 
according to the objective values. For minimization problem, the smaller the value of F(x) is, the better the 
chromosome is, and the smaller the ordinal number the chromosome has. For maximization problem, the greater the 
value of F(x) is, the better the chromosome is, and the smaller the ordinal number the chromosome has.  

3. Compute the values of the rank-based evaluation function of the chromosomes, and then, the fitness of each 
chromosome according to the rank-based-evaluation function. Find the best chromosome Ccur of Q. If the best strings 
are not unique, then call anyone of the best strings in Q as Ccur. 

4. Construct the matting-pool of feasible chromosomes using Gen-pool (Ccur belongs to Q). Perform cross over and 
mutation operations on the chromosomes of the matting pool and obtain a population Qtemp of feasible chromosomes. 
Note: If an invalid chromosome occurs in any operation then do the same operation for a maximum of say 10 times, if 
at any step it results in a valid chromosome then go to the next step, otherwise replace the invalid chromosome by a 
randomly generated valid chromosome. 

5. Compare the fitness value of each string C of Qtemp with Scur. Replace the worst string of Qtemp with Ccur if the fitness 
value of at least one string of Qtemp is less than the fitness value of Scur; otherwise no replacement takes place in Qtemp. 
Rename Qtemp as Q. 

6. Repeat steps 2 to 5 a number of times. 
7. The best string obtained at the last iteration is the required solution. 

 
5. CASE STUDY: BOMBAY STOCK EXCHANGE (BSE)  

In this section we apply the proposed portfolio selection models on the data set extracted from Bombay stock exchange 
(BSE). Bombay Stock Exchange is the oldest stock exchange in Asia with a rich heritage of over 133 years of existence. What is 
now popularly known as BSE was established as "The Native Share & Stock Brokers' Association" in 1875. It is the first stock 
exchange in India which obtained permanent recognition (in 1956) from the Government of India under the Securities 
Contracts (Regulation) Act (SCRA) 1956. With demutualization, the stock exchange has two of world's prominent exchanges, 
Deutsche Borse and Singapore Exchange, as its strategic partners. Today, BSE is the world's number 1 exchange in terms of the 
number of listed companies and the world's 5th in handling of transactions through its electronic trading system. The companies 
listed on BSE command a total market capitalization of USD Trillion 1.06 as of July, 2009.   

The BSE Index, SENSEX, is India's first and most popular stock market benchmark index. Sensex is tracked worldwide. It 
constitutes 30 stocks representing 12 major sectors. It is constructed on a 'free-float' methodology, and is sensitive to market 
movements and market realities. Apart from the SENSEX, BSE offers 23 indices, including 13 sectoral indices. 
We have taken monthly share price data for sixty months (March 2003- February 2008) of just five companies which are 
included in Bombay Stock Exchange (BSE) index. Though any finite number of stocks can be considered, we have taken only 
five stocks to reduce the complexity of representation.   

The Table 5.1 shows the companies name along with their return in the form of trapezoidal fuzzy numbers. 
 

Table 5.1. Fuzzy return of stocks under BSE 
Company Variables Return 

Reliance energy R (-0.008, 0.0223, 0.0501,0.0673)  
L&T L (-0.0031,0.0287, 0.0611, 0.0866) 
Bhel B (-0.0020,0.0282, 0.0581, 0.0832) 

Tata steel T (0.0086, 0.0296, 0.0410, 0.0525) 
SBI S (-0.100, 0.0217, 0.0576, 0.0789) 
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Example 5.1 Considering the minimum expected return and the bearable maximum risk to be as 0.04323 and 0.007 respectively, 

we judge the following model: 

1 1 2 2 3 3 4 4 5 5

1 1 2 2 3 3 4 4 5 5

1 1 2 2 3 3 4 4 5 5

1 2 3 4 5

i

maximize S[r x r x r x r x  + r x ]
  subject to 
  E[r x r x r x r x  + r x ]  0.043
  V[r x r x r x r x  + r x ]  0.007
  x x x x x  = 1
  x   0, i = 1, 2, 3, 4, 5.

+ + +


 + + + ≥
 + + + ≤

+ + + +

≥

    

    

    





 

Example 5.2 Considering the minimum skewness and the bearable maximum risk to be as – 0.05 and 0.007 respectively, we 

judge the following model:  

1 1 2 2 3 3 4 4 5 5

1 1 2 2 3 3 4 4 5 5

1 1 2 2 3 3 4 4 5 5

1 2 3 4 5

i

maximize E[r x r x r x r x  + r x ]
  subject to 
  V[r x r x r x r x  + r x ]  0.007
  S [r x r x r x r x  + r x ]  0.05
  x x x x x  = 1
  x   0, i = 1, 2, 3, 4, 5.

+ + +


 + + + ≤
 + + + ≥ −

+ + + +

≥

    

    

    




 

Example 5.3 Considering the minimum skewness and the minimum expected return to be as – 0.05 and 0.043, we judge the 

following model: 

1 1 2 2 3 3 4 4 5 5

1 1 2 2 3 3 4 4 5 5

1 1 2 2 3 3 4 4 5 5

1 2 3 4 5

i

minimize V[r x r x r x r x  + r x ]
  subject to 
  E[r x r x r x r x  + r x ]  0.043
  S [r x r x r x r x  + r x ]  0.05
  x x x x x  = 1
  x   0, i = 1, 2, 3, 4, 5.

+ + +


 + + + ≥
 + + + ≥ −

+ + + +

≥

    

    

    




 

Example 5.4 Consider the following multi objective portfolio problem: 

1 1 2 2 3 3 4 4 5 5

1 1 2 2 3 3 4 4 5 5

1 1 2 2 3 3 4 4 5 5

1 2 3 4 5

i

maximize E[r x r x r x r x  + r x ]
minimize V[r x r x r x r x  + r x ]
maximize S[r x r x r x r x  + r x ]  
subject to  
   x x x x x  = 1
  x   0, i = 1, 2, 3, 4, 5.

+ + +
 + + +
 + + +



+ + + +

≥

    

    

    





 

We apply the hybrid intelligent algorithm to solve the examples. The binary coding, uniform crossover, uniform mutation and 

the following parameters of genetic algorithms are considered: population size = 200, crossover probability = 0.8, mutation 

probability = 0.1, chromosome length = 8n (8 bits for each gene), n = 5 and population generations = 25. The solutions of the 

above four examples are shown in table 5.2. 
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Table 5.2 Solutions of examples 5.1, 5.2, 5.3 and 5.4 

Output Solutions of 
Example 5.1 Example 5.2 Example 5.3 Example 5.4 

R (x1) 0 0 0 0 
L (x2) 0.4516 0.5973 0.5341 0.5374 
B (x3) 0.5484 0.4027 0.4510 0.4626 
T (x4) 0 0 0.0149 0 
S (x5) 0 0 0 0 
Mean × 0.0432 × 0.043133 

Variance × × 0.0066 0.006705 
Skewness -0.0489 × × – 0.04953 

 

From table 5.2 it is clear that if the investor chooses the model in example 5.1, the person has to invest 45.16% of the 
total asset to the 2nd stock and 54.84% of the total money to the 3rd stock. In this scenario, the expected skewness will be – 
0.0489. 
Similar explanation can be given for examples 5.2 and 5.3.  
If the investor chooses the multi-objective model given in example 5.4, 53.74% and 46.26% of the total assets should be invested 
in the 2nd and 3rd stocks. In this case, the expected return, risk and skewness will be 0.043133, 0.006705 and – 0.04953 
respectively.  

The portfolios for examples 5.1, 5.2, 5.3 and 5.4 are shown in figure 5.1. 
 

 
Figure 5.1 Solutions of examples 5.1, 5.2, 5.3 and 5.4 

6. CONCLUSION 

In this paper, the concepts of weighted possibilistic moments of fuzzy numbers are used to model the fuzzy portfolio 
selection problem. Four different models for fuzzy portfolio selection have been proposed considering (a) single objective 
optimization models, (b) tri-objective optimization model. Each problem is equivalent to a crisp parametric non linear 
programming problem. Integration of fuzzy simulation with elitist model of genetic algorithm is done to find a better optimal 
solution. Finally, we illustrated our methodology on Bombay Stock Exchange (BSE) market. In comparison to some other 
mean- variance- skewness portfolio selection models, this method is much less complex as this approach does not require 
calculating the variance- covariance and the product co-moment matrices separately form historical/statistical data. In near 
future, some other algorithms such as PSO (particle swarm optimization), VEGA (vector evaluation genetic algorithm), NEGA 
(Nondominated sorting genetic algorithm), NPGA (Niched Pareto genetic algorithm) and ACO (Ant Colony Optimization) may 
be employed to solve the problem, especially when the data set is significantly large. 
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