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Abstract  Supply chain members, manufacturers and retailers, usually share common responsibility on national and local 
advertising for sales promotion.  However, how to delineate and execute the non-cooperative advertising strategies, which 
is one kind of channel coordination mechanism in marketing domain, within a supply chain is a critical issue and must be 
addressed by both manufacturers and retailers.  For analyzing non-cooperative advertising among multiple agents with 
interdependent objectives, game theory has become a popular tool recently.  Hence, in this research, the game theory is 
used to investigate different gaming structures in a supply chain might influence the manufacturer’s subsidy policy and their 
branding investment in national advertising activities. The primary objective of this research is to construct the mathematic 
models in different market response functions associated with the gaming structures, and then to identify their equilibrium 
(or solutions) and also to explore some preference conditions for both supply chain players.  In this research, four different 
cases of market response functions are constructed.  There are cases of market response functions that we consider the 
manufacturers whose polices in long-term branding investments could influence the retailers whose polices in short-term 
promotion efforts.  Thus, this research problems become to solve the systematic non-cooperative advertising problem 
under different market response functions by using (1) the analytic solution approach to identify both the equilibriums of 
two-player of manufacturing-retailer (M-R) simultaneous Nash game; it’s solution as a reference of the solution using swarm 
particle optimization-crowding distance (MOPSO-CD) or non-dominated sorting genetic algorithm (NSGA II)  and (2) by 
using MOPSO-CD or NSGA II integrated the Nash game identify the equilibriums of the case of both multi-manufacturer 
and multi-retailer without considering the polices in long-term branding investments could be influenced each other by 
manufacturer firms and in short-term promotion efforts could be influenced each other by retailers in the non-cooperative 
advertising.  Finally, this research will implement a real case and their numerical results will demonstrate the feasibility of 
the equilibrium (or solution) using MOPSO-CD or NSGA II for solving multi-objective and multi-disciplinary optimization 
problems of the non-cooperative advertising in supply chain. 
 

Keywords  Non-cooperative advertising, nash equilibrium, multi-objective problem optimization, multi-player game, 
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1. INTRODUCTION 

 Many studies on supply chain management have emphasized the long-term strategic relationship between a 
manufacturing firm and its retailer (Maloni and Benton, 1997).  The premise underlying this relationship is that such a 
partnership makes both the manufacturer and the retailer better off  than before.  That is, the essence of  partnership is to 
take both parties into a win-win situation through coordination.  Many works has been carried out on coordination 
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mechanisms in the last decade (Malone and Crowston, 1994).  Just-in-time (JIT) purchasing, collaborative planning, vendor 
managed inventory (VMI), third party logistics methods to deal with the inter-organizational coordination.  These 
mechanisms can enhance the partner’s quality, reduce the risk and supply cost, promote their communication and share their 
profits.  
 Although a lot of  literature has focused on supply chain coordination, most of  them are just conceptual discussions 
instead of  an analytical analysis.  An interesting survey found by Croom et al. (2000) suggested the relative lack of  
theoretical work in this filed when compared to empirically based studies.  They set a framework for literature analysis 
which is categorized according to two dimensions - from theoretical to empirical and prescriptive to descriptive.  The 
survey shows that the literature is dominated by descriptive empirical studies.  Very few in the way of  theoretical works 
have been developed.  The efforts of  this study will make to fit in the theoretical and prescriptive category, which takes up 
some percentages of  the relevant literature. 
 Among those inter-organization coordination mechanisms, non-cooperative advertising is a famous one in supply 
chain domain.  Generally speaking, there are two types of  advertising for any product.  National advertising is intended to 
reinforce the brand image in the eyes of  potential consumers and to build their purchasing preference.  On the other hand, 
local advertising is to encourage consumers’ buying behaviors and to give consumers more reasons to buy target products in 
the near future.  That is, the emphasis in national advertising is to create favorable product attitudes, whereas local 
advertising is often price oriented. 

Non-cooperative advertising is often defined as an arrangement whereby a manufacturer pays for some or all of  the 
costs of  local advertising undertaken by a retailer who is responsible for selling products made by the manufacturer (Bergen 
and John, 1997).  The main purpose for a manufacturer to utilize non-cooperative advertising is to strengthen the image of  
its own brand and to increase the short-term sales at the retail lever (Hutchins, 1953).  Bergen and John (1997) also pointed 
out that non-cooperative advertising is not a specialized kind of  advertising, instead; it is essentially a financial arrangement 
under which both parties agree how the costs of  mutual promotion are to be defrayed.  They focused on the most 
prominent aspect of  these plans – the “participation rate”, that is, the percentage of  the retailers’ local advertising 
expenditures that the manufacturer agrees to pay.  In a same vein from Croom et al. (2000), Crimmins (1984) also found 
that much of  the extant work on non-cooperative advertising is descriptive, reporting trends in industry practice, legal issues 
and management problems. 

In their seminal work, Jorgensen et al. (2000) used differential games to analytically study how a manufacturer can 
design an inter-temporal advertising support program that is optimally non-coordinated with his own advertising strategies 
and the retailer’s advertising efforts.  Besides that, Li et al., (2002) investigated the efficiency of  transactions for the 
non-cooperative advertising in the context of  game theory.  They developed manufacturer and a retailer in a supply chain.  
The reason to use game theory is rooted on the fact that many models in supply chains developed from single decision 
maker’s perspective cannot adequately stand for the sophisticated competitive and non-cooperative relationships in supply 
chains, and game theory, a tool of  strategy analysis for conflict and non-cooperation, should be a more desirable approach.  
Cachon and Netessine (2003) also pointed out that game theory has become an essential tool in the analysis of  supply 
chains consisting of  multiple agents with conflicting objectives.  The reason is that it is more important to understand the 
interactions among independent agents within and across firms.  They also expect that the application of  game theory to 
supply chain management is still in its infancy; much more progress will be made soon.  Therefore, this kind of  research is 
highly demanded. 

As indicated in their possible avenues for future research, different sales response function may yield interesting 
results in the analysis for systematic non-cooperative advertising agreements (Li et al., 2002).  Lilien et al. (1992) proposed a 
market response function based on a product was determined by the manufacturer’s national brand image investment and 
the retailer’s local advertising expenditures.  In the model, the effects of  the local advertising expenditures and brand image 
investments on sales quantity are limited.  And only when both efforts are exhausted, the market saturation level will be 
attained.  In addition, the participation rate of  local advertising expenditures shared by the manufacturer, which is a 
decision variable for manufacturer in addition to the national brand image investment.  Assuming the interactions between 
long-term branding investments and short-term promotion efforts can be neglected, and based on a simple and different 
market response functions, this research will study the non-cooperative advertising problem under simultaneous Nash game. 

Nash equilibrium is the solution of a non-cooperative strategy of multi-objective optimization first introduced by 
Nash (1951).  Since it appeared first in Economics, the notion of player is often used in the sequel.  Each player is in 
charge of one objective, has his own strategy set and its own criterion.  During the game, each player looks for the best 
strategy in his search space in order to improving his own criterion while criteria of other players are fixed.  The frequency 
of exchange of strategies   is called the Nash frequency, generally   = 1, which means the exchange of best strategies 
takes place at the end of each generation.  When no player can further improve his criterion, the system has reached a state 
of equilibrium named Nash equilibrium. 
 In the following a two-player Nash game is considered to present the Nash equilibrium mechanism.  Let A denotes 
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the search space for the first player, B the search space for the second player, a strategy pair * *
( , )x y A B  is a two-player 

Nash equilibrium iff: 
* * * * * *

( , ) inf ( , ) or ( , ) Min ( , )
A A A A

x A x A

f x y f x y f x y f x y
 

  ; while 
A

f  is  

the cost response function, or                                                                   (1) 
* * * * * *

( , ) Sup ( , ) or ( , ) Max ( , )
A A A A

x Ax A

f x y f x y f x y f x y


  ; while 
A

f  is  

the profit response function,                                                                   (1’) 
* * * * * *

( , ) inf ( , ) or ( , ) Min ( , )
B B B B

y B y B

f x y f x y f x y f x y
 

  ; while 
B

f  is  

the cost response function, or                                                                   (2) 
* * * * * *

( , ) Sup ( , ) or ( , ) Max ( , )
B B B A

y By B

f x y f x y f x y f x y


  ; while 
B

f  is  

the profit response function,                                                                      (2’) 

where 
A

f  could be denoted as the gain or loss for the first player, A, 
B

f  could be denoted as the gain or loss for the 

second player, B.  
Wang and Periaux (2001) proposed two optimization strategies based on games and compared to address the problem 

of  multi-objective optimization: a non-symmetric hierarchical approach named a Stackelberg game and a symmetric 
non-cooperative game based on Nash equilibrium.  They combined Stackelberg/GAs (namely S/GAs) and Nash/GAs 
(namely N/GAs) optimization methods to implement and optimize the position of  flap and slat of  a high lift system 
operating simultaneous at taking off  and landing conditions. S/GAs provide better solutions if  the leader and the follower 
are correctly chosen according to the physics of  the problem.  In Wang and Periaux (2001), the main interest of  N/GAs is 
that they are faster and more robust even if  the solutions that they find are near optimal rather than optimal.  Therefore, in 
this research the multi-objective techniques combining ideas from game theory with GAs may lead to powerful and robust 
methods for solving non-cooperative advertising in the manufacturer-retailer supply chain problems.  Deb (2001) and Deb 
et al. (2002) have introduced elitism and diversity preservation mechanisms to the non-dominated sorting genetic algorithm 
(NSGA) (Srinivas and Deb, 1994) to improve the algorithm performance.  The revised algorithm, named NSGA-II, has 
been applied to many theoretical and real-world problems, and is shown to be more efficient than its predecessor.  
Optimization problems are based on NSGA and NSGA-II.  Both NSGA and NSGA-II use non-dominated sorting to 
determine preliminary fitness values. 

A particle swarm optimization (PSO) algorithm is a member of  the wide category of  swarm intelligence methods 
(Kennedy and Eberhart, 2001) for solving global optimization (GO) problems.  It was originally proposed by J. Kennedy as 
a simulation of  social behavior, and it was initially introduced as an optimization method in 1995 (Eberhart and Kennedy, 
1995).  PSO algorithm is related with artificial life and specifically to swarming theories, and also with evolutionary 
computation (EC), especially evolution strategies (ES) and genetic algorithm (GA).  PSO algorithm can be easily 
implemented and it is computationally inexpensive, since its memory and CPU speed requirements are low (Eberhart et. al., 
1996).  Moreover, it does not require gradient information of  the corrective function under consideration, but only its 
values, and it uses only primitive mathematical operators.  PSO algorithm has been proved to be an efficient method for 
many goal optimization (GO) problems and in some cases it does not suffer the difficulties encountered by other EC 
techniques (Eberhart and Kennedy, 1995).  Later, Clerc and Kennedy (2002) indicated that even though PSO had been 
shown to perform well, but researchers had not adequately explained how it works.  Traditional versions of  the PSO had 
had some dynamical properties that were not considered to be desirable, notably the particles’ velocities needed to be 
limited in order to controlling their trajectories and convergence.  They analyzed the particle’s trajectory as it moved in 
discrete time (the algebraic view), then progresses to the view of  it in continuous time (the analytical view).  Those analyses 
leaded to a generalized model of  the algorithm, containing a set of  coefficients to control the system’s convergence 
tendencies.  Some results of  the particle swarm optimizer suggested methods for altering the original algorithm in ways 
that eliminated problems and increased the optimization power of  the particle swarm.  

The performance of different multi-objective algorithms that incorporate such optimization techniques was compared 
in Coello et al., (2004) using five test functions.  These algorithms are NSGA-II, PAES (Knowles and Corne, 2000) and 
SPEA2 (Zitzler et al., 2000), Micro-GA (Coello and Pulido, 2001) and MOPSO.  The results show that MOPSO was able 
to generate the best set of non-dominated solutions close to the true Pareto front in all test functions except in one function 
where NSGA-II is superior.  In terms of diversity of the non-dominated solutions, NSGA-II produced the best results in 
all test functions but was not able to cover the entire Pareto front in all test functions.  MOPSO was the only algorithm 
which was able to cover the entire Pareto front. 

Multi-objective particle swarm optimization - crowding distance (MOPSO-CD) approach extends the algorithm of  the 
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single-objective PSO to handle multi-objective optimization problems.  It incorporates the mechanism of  crowding 
distance computation into the algorithm of  PSO specifically on global best selection and in the deletion method of  an 
external archive of  non-dominated solutions (Raquel and Naval, 2005).  The crowding distance mechanism together with a 
mutation operator maintains the diversity of  non-dominated solutions in the external archive.  MOPSO-CD also has a 
constraint handling mechanism for solving constrained optimization problems. 

In this research, the Nash/MOPSO-CD (namely (N/MOPSO-CD)) optimization method will be proposed.  In 
N/MOPSO-CD game, the MOPSO-CD algorithm will be used to handle the Nash games by incorporating the mechanism 
of  crowding distance computation, specifically on global best selection and in the deletion method of  an external archive of  
non-dominate d  solutions (Raquel and Naval, 2005).  The performance in converging of  this approach will be evaluated 
on test functions and metrics from literature. 

Based on previous description, the research problem can be addressed as follows. 
(1) Comparing and analyzing the equilibriums of  two-player of  M-R Nash game for the non-cooperative advertising in 

supply chain by using the analytic solution approach and the identified equilibriums can be the reference of  the solution 
approach by using MOPSO-CD or NSGA II for comparison. 

(2) Comparing and analyzing the case of  U vs. V equilibriums of  multi-player M-R Nash game for the non-cooperative 
advertising in supply chain using the MOPSO-CD and SNGA II, where U is the number of  manufacturers and V  is 
the number of  retailers. 

 
2. GAME THEORY FOR MANUFACTURER AND RETAILER NON-COOPERATIVE ADVERTISING IN 

SUPPLY CHAIN 

The main purpose of  this section is to identify the equilibriums associated with Nash game for both supply chain 
players.  This game-theoretic model is a systematic move game in which the manufacturer and the leader both players are 
in parity and engage in a simultaneous move game.  
 
2.1 Two-player Nash Game for Non-cooperative Advertising 

Consider a supply chain consisting of  a manufacturer and a retailer.  Assume that the market response function of  the 
product is mainly determined by the manufacturer’s national brand image investment, N , and the retailer’s local advertising 
expenditures, L .  The participation rate of  local advertising expenditures shared by the manufacturer is  , which is a 
decision variable for manufacturer in addition to the national brand image investment, N .  The following is the market 
response function adopted from Lilien et al., (1992).  

1 2 1 2
( , ) , 0, 0, 0, 0, 0Q N L N L

                         (3) 

where   is the market saturation level, 
1
 , 

2
 ,   and   are positive constants and are the experience parameters.  

The rationale to use a polynomial format for the sales quantity is based on the following properties.  First of  all, ( , )Q N L  
is a non-decreasing function of  both N  and L .  Next, the sales quantity ( , )Q N L  approaches to   when both the 

local advertising efforts and brand image investments turn to infinity, that is, 
,

lim ( , )
N L

Q N L 
 

 .  In other words, the 

effects of  their local advertising expenditures and brand image investments on sales quantity are limited.  Only when both 

efforts are exhausted, the market saturation level will be attained.  Finally, because 2 2
( , ) / 0Q N L N    and

2 2
( , ) / 0Q N L L a   , there are decreasing returns to scale of  efforts on branding investments and local advertising.  The 

higher the value of  the influence parameter   is, the more the impact of  brand image investments is on the market 
response function.  In the same logic, the higher the value of  another influence parameter   is, the more the impact of  
local advertising is on the sales quantity.  

The marginal profits of  the manufacturer and retailer for each product sold are m  and 
r

 , respectively.  The 

participation rate of  local advertising expenditures shared by the manufacturer is  , which is a decision variable for 

manufacturer in addition to the national brand image investment.  According to the above parameters, let 
m

 , 
r

  and 

s
  be the payoff  functions for both parties and whole supply chain, thus, there are the following payoff  functions.  

1 2
( ) ,

m m
N L L N

                                    (4) 

1 2
( ) (1 ) ,

r r
N L L

                                     (5) 
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1 2
( )( )

s m r m r
N L L N

                                           (6) 

The objective of  each player is to simultaneously maximize its own payoff  function with respect to any possible 
strategies set by the other players in the supply chain (Fudenberg and Tirole 1991).  The objective profit of  manufacturer is 
to maximize Eq. (4), that is 

1 2
, ,

Max ( )
m m

N L

N L L N
 



                                          (7) 

t.s.
1/ ( 1 )

2
[ / (1 )] 0

r
L a

      ,
1 2

0, 0, 0, 0, 0         , 0
m

  , 0 1   0N  . 

1 2
, ,

Max ( ) (1 )
r r

N L

N L L
 



                                          (8) 

s. t. 0L  , 
1 2

0, 0, 0, 0, 0         , 0
r

  . 

However, it is obvious that the cooperative participation rate,  , is zero because of  its negative coefficient in the payoff  

function.  Therefore, the first order conditions for both players are reduced to ( / ) 0
m

N    and ( / ) 0Lr   , and 

( 1)
1 01Nm

   
  ,                                      (9) 

and  
   1

2
1 0

r
L

       .                                     (10) 

 Solving system of  Eqs. (9) and (10), we obtain that the solution,  , ,N L   , concerning the Nash equilibrium of  

the simultaneous move game are as follows. 

 
1

1
1 m

N  
 ,                                        (11) 

0   , and                                           (12) 

 
1

1
2

r
r

L  
 .                                         (13) 

 This theorem implies several important facts.  First of  all, no matter what values of  the other parameters are, the 
manufacture is unwilling to share any portion of  local marketing effort with the retailer under the simultaneous move game.  
Secondly, the manufacturer’s marginal profit is positively related to the national brand image investment.  That is,

/ 0
m

N    .  For the manufacturer, a higher marginal profit gives him a string incentive to invest more in its brand 

reputation.  Thirdly, the retailer’s marginal profit is positively related to the local advertising efforts.  That is, / 0
r

L    .  

In view of  the retailer, the higher the marginal profit, the stronger the incentive to increase local advertising budgets even 
though the manufacturer does not share the cost.  
 
2.2 Multi-player Nash Game for Non-Cooperative Advertising (Case of U vs. V M-R Nash Game) 

Assume that the market response function of  the product is also mainly determined by the each manufacturer’s 

national brand image investment,
i

N , 1, 2, ...,i U , where the U  manufacturers whose polices are not influenced by 

each other and each retailer’s local advertising expenditures, ,
ij

L 1, 2, ...,i U , 1, 2, ...,j V , where the V  retailers 

whose polices are not influenced by each other, and each retailer’s local advertising expenditures corresponded to each 
manufacturer’s participation rate.  The market response function could be 

( , ); 1, 2, ..., , 1, 2, ...,
i ij

Q N L i U j V   

1 1 11 2

iji
U U V

i i ji i ij ij
N L

  


        

                     1 2
0, 0, 0, 0, 0 ;

i ij i ij
          1, 2, ...,i U , 1, 2, ...,j V ,  (14) 

where  , is the market saturation level, 
1i

 , 1, 2, ...,i U , 
2 ij

 , 1, 2, ...,i U , 1, 2, ...,j V , 
i

 , 1, 2, ...,i U  

and 
ij
 , 1, 2, ...,i U , 1, 2, ...,j V  are the positive constants.  Similarly, the marginal profits of  manufacturers and 

retailers for each product sold in averaged prices are 
m

  and 
r

 , respectively.  Assume every retailer’s marginal profit is 

the same, that is, the product price will be one price from each retailer.  In addition, the participation rate of  V  local 

advertising expenditures shared by the U  manufacturers is 
ij

 , 1, 2, ...,i U , 1, 2, ...,j   which is the decision 

variable for each manufacturer in addition to the national brand image investment, 
i

N , 1, 2, ...,i U .   
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The objective of  the manufacturer is  

1 1 11 2,
( )Max

iji

i ij

U U V

i i jm m i i ij ijN
N L




    



       1 1 1

U V U

i j iij ij i
L N                   (15) 

       s. t. 0 11 1
U V

iji j     , 1, 2, ...,i U ; 1, 2, ...,j V , 0
i

N  ,  

1, 2, ...,i U , 0, 0, 0, 0, 0,1 2 i iji ij         0,
r

   0,
ij

L  0 1,
ij

   1, 2, ..., ,j V  0
i

N  , where   is 

also the market saturation level, 
1i

 , 1, 2, ...,i U , 
2 ij

 , 1, 2, ...,i U , 1, 2, ...,j V , 
i

 , 1, 2, ...,i U  and 
ij
 , 

1, 2, ...,i U , 1, 2, ...,j V  are the positive constants. 

, ,
1 1 11 2

( )Max
iji

N L
i ij ij

U U V

i i jr r i i ij ij
N L



    


       1 1
(1 )U V

i j ij ij
L                       (16) 

           s. t. 0
ij

L  , 1, 2, ...,i U , 1, 2, ...,j V . 

 However, it is obvious that the non-cooperative participation rate, 
ij

 , 1, 2, ...,i U ; 1, 2, ...,j V , is zero because of  

its negative coefficient in the payoff  function.  Solving system of  Eqs. (15) and (16) for 
i

N , 
ij
  and 

ij
L , the optimal 

solution, **
Ni , 

**
ij  and 

**
Lij  are not the same as using Eqs. (11), (12) and (13), individually.  The analytical solution 

procedure could be difficult, thus, the MOPSO-CD or SNGA II and can be used to the solution procedures. 
The two-stage game can be analyzed by (Fudenberg and Tirole, 1991), S/MOPSO-CD or S/NSGA II (Wang and 

Periaux, 2001).  
 
3. SOLUTION METHODOLOGY 

3.1 The Algorithms of PSO and PSO-CD 

PSO represents an optimization method where particles collaborate as a population to reach a collective goal.  Each 

n-dimensional particle ix  is a potential solution to the collective goal, usually to minimize a function, f.   PSO differs 

from traditional optimization methods, in that a population of  potential solutions is used in the search.  The direct fitness 
information instead of  function derivatives or other related knowledge is used to guide the search.   

A particle ix  has memory of  the best solution 
i

y  that it has found, called its personal best; it flies through the search 

space with a velocity iv , which is dynamically adjusted according to its personal best and the global best solution iy  by 

found by the rest of  the swarm (called the gbest topology).  Other topologies for information sharing have also been 
investigated (Kennedy and Eberhart, 1995; Kennedy et al., 2001; Kennedy and Mendes, 2002). 

 Let i indicates a particle’s index in the swarm, such that 
1 2

{ , , , }
s

     S x x x is a swarm of  s particles.  During 

iterations of  the PSO algorithm, the personal best 
i

y  of  each particle is compared to its current performance, and set to 

the better performance.  If  the objective function to be minimized is defined as :
n

f R R  then 
( 1) ( ) ( 1)

( )

( ) ( ) ( 1)

( ) ( )

( ) ( )

t t t

t i i i

i t t t

i i i

if f f

if f f

 












y x y
y

x x y
.                                  (17) 

The global best iy  is updated to the position with the best performance within the swarm, with 

( ) ( ) ( ) ( ) ( )
ˆ ˆ{ , , , } | ( )

1 2

t t t t t
f

s
     y y y y y

 
 

( ) ( ) ( )

1 2
{ ( ), ( ), , ( )}

t t t

s
min f f f     y y y .                               (18) 

Traditionally, each particle’s velocity and position is updated separately for each dimension j, with  
( 1) ( ) ( ) ( ) ( ) ( ) ( ) ( )

1 1 2 2
ˆ( ) ( )

t t t t t t t t

ij ij j ij ij j j ij
v wv c r y x c r y x

      ,                       (19) 
( 1) ( 1) ( )t t t

ij ij ij
x v x

   .                                     (20) 

The stochastic nature of  the algorithm is determined by ( )

1

t

j
r and ( )

2

t

j
r , two uniform random numbers between zero 

and one.  These random numbers are scaled by acceleration coefficients  and 2c , where 
1 2

0 , 2c c  .  The 

inertia weight w  was introduced to improve the convergence rate of  the PSO algorithm (Shi and Eberhart, 1998).  It is 
1c
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possible to clamp the velocity vectors by specifying upper and lower bounds on 
i

v , to avoid too rapid movement of  

particles in the search space. 
The standard PSO algorithm is summarized below (Paquet and Engelbrecht, 2003): 
Algorithm – Standard Particle Swarm Optimizer 
Step 1. Set the iteration number t to zero, and randomly initialize swarm S within the search space.  

Step 2. Evaluate the performance ( )
( )

t

i
f x of  each particle. 

Step 3. Compare the personal best of  each particle to its current performance, and set ( )t

i
y  to the better performance, 

according to Eq. (17). 

Step 4. Set the global best ( )ˆ t

i
y  to the position of  the particle with the best performance within the swarm, according 

to Eq. (18). 
Step 5. Change the velocity vector for each particle, according to Eq. (19). 
Step 6. Move each particle to its new position, according to Eq. (20). 
Step 7. Let t := t + 1. 
Step 8. Go to Step 2, and repeat until convergence. 
 The PSO algorithm described above does not lend itself  well to optimizing constrained functions (Paquet and 

Engelbrecht, 2003).   
 
3.1.1 MOPSO Algorithm 

MOPSO-CD algorithm which is proposed by Raquel and Naval (2005) is as follows. 
1. For i = 1 to M (M is the population size) 

a. Initialize P[i] randomly (P is the population of  particles) 
b. Initialize VEL[i] = 0 (VEL is the speed of  each particle) 
c. Evaluate P[i] 
d. Initialize the personal best of  each particle pbests[i] = P[i] 
e. gbest = Best particle found in P[i] 

2. End For 
3. Initialize the iteration counter t = 0 
4. Store the non-dominated vectors found in P into A (A is the external archive that stores non-dominated solutions 

found in P) 
5. Repeat 

a. Compute the crowding distance values of  each non-dominated solution in the archive A 
b. Sort the non-dominated solutions in A in descending crowding distance values 
c. For i = 1 to M 

i. Randomly select the global best guide for P[i] from a specified top portion (e.g. top 10%) of  the sorted 
archive A and store its position to gbest. 
ii. Compute the new velocity: 

1 1
[ ] [ ] ( [ ] [ ]) ( [ ] [ ])VEL i  W VEL i R pbests i P i R A gbest  P i                (21) 

(W is the inertia weight equal to 0.4) ( 1R  and 2R  are random numbers in the range [0 ...1]) (pbests[i] is the best 

position that the particle i have reached) ( [ ]A gbest   is the global best guide for each non-dominated solution) 
iii. Calculate the new position of  [ ]P i : [ ] [ ] [ ]P i P i VEL i   
iv. If  [ ]P i  goes beyond the boundaries, then it is reintegrated by having the decision variable take the value 

of  its corresponding lower or upper boundary and its velocity is multiplied by -1 so that it searches in the  
opposite direction. 

v. If  ( ( )t MAXT PMUT  , then perform mutation on [ ]P i . (MAXT is the maximum number of  iterations) 
(PMUT is the probability of  mutation)  

vi. Evaluate [ ]P i  
d. End For 
e. Insert all new non-dominated solution in P into A if  they are not dominated by any of  the stored solutions.  All 

dominated solutions in the archive by the new solution are removed from the archive.  If  the archive is full, the 
solution to be replaced is determined by the following steps: 

i. Compute the crowding distance values of  each non-dominated solution in the archive A 
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ii. Sort the non-dominated solutions in A in descending crowding distance values 
iii. Randomly select a particle from a specified bottom portion (e.g. lower 10%) which comprise the most 

crowded particles in the archive then replace it with the new solution 
f. Update the personal best solution of  each particle in P.  If  the current pbests dominates the position in memory, 

the particles position is updated using pbests [i] = [ ]P i  
g. Increment iteration counter t 

6. Until maximum number of  iterations is reached 
 
3.1.2 Crowding Distance Computation 

 The crowding distance value of  a solution provides an estimate of  the density of  solutions surrounding that solution 
(Deb, 2000).  Figure 1 shows the calculation of  the crowding distance of  point i which is an estimate of  the size of  the 
largest cuboid enclosing i without including any other point. 

 

Figure 1 Crowding Distance Computation (Raquel and Naval, 2005) 

 
Crowding distance is calculated by the first sorting the set of  solutions in ascending objective function values.  The 

crowding distance value of  a particular solution is the average distance of  its two neighboring solutions.  The boundary 
solutions which have the lowest and highest objective function values are given an infinite crowding distance values so that 
they are always selected.  This process is done for each objective function.  The final crowding distance value of  a 
solution is computed by adding the entire individual crowding distance values in each objective function.  The pseudo code 
of  crowding distance computation is shown below. 

1. Get the number of  non-dominated solutions in the external repository  
a. n = | S | 

2. Initialize distance 
a. For i = 0 to MAX 
b. S[ i].distance = 0 

3. Compute the crowding distance of  each solution 
 a. For each objective m 

b. Sort using each objective value S = sort(S, m) 
 c. For i = 1 to (n - 1) 
 d. S[i].distance = S[i].distance + (S[ i+1].m – S[ i-1].m) 

e. Set the maximum distance to the boundary points so that they are always selected S[ 0 ].distance = S[ n ].distance = 
maximum distance 

 











Cuboid

i - 1 

i 

i + 1

F1 

F2 
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3.1.3 Global Best Selection 

The selection of  the global best guide of  the particle swarm is a crucial step in a multi-objective-PSO algorithm.  It 
affects both the convergence capability of  the algorithm as well as maintaining a good spread of  non-dominated solutions.  
In MOPSO-CD, a bounded external archive stores non-dominated solutions found in previous iteration.  It can be noted 
that any of  the non-dominated solutions in the archive can be used as the global best guide of  the particles in the swarm.  
But it is necessary to ensure that the particles in the population move towards the sparse regions of  the search space.  In 
MOPSO-CD, the global best guide of  the particles is selected from among those non-dominated solutions with the highest 
crowding distance values.  Selecting different guides for each particle in a specified top part of  the sorted repository based 
on a decreasing crowding distance allows the particles in the primary population to move towards those non-dominated 
solutions in the external repository which are in the least crowded area in the objective space.  Also, whenever the archive 
is full, crowding distance is again used in selecting which solution to replace in the archive.  This promotes diversity among 
the stored solutions in the archive since those solutions which are in the most crowded areas are most likely to be replaced 
by a new solution. 
 
3.1.4 Mutation 

The mutation operator of  MOPSO was adapted because of  the exploratory capability it could give to the algorithm by 
initially performing mutation on the entire population then rapidly decreasing its coverage over time (Coello et al., 2004).  
This is helpful in terms of  preventing premature convergence due to existing local Pareto fronts in some optimization 
problems. 
 
3.1.5 Constraint Handling 

In order to handle constrained optimization problem, MOPSO-CD adapted the constraint handling mechanism used 
by GAs due to its simplicity in using feasibility and non-dominance of  solutions when comparing solutions.  A solution i  
is said to constrained-dominate a solution j  if  any of  the following conditions is true: 

1.  Solution i  is feasible and solution j  is not. 

2. Both solutions i  and j are infeasible, but solution i  has a smaller overall constraint   violation. 

3. Both solutions i  and j  are feasible and solution i dominates solutions j .  When comparing two feasible 

particles, the particle which dominates the other particle is considered a better solution.  On the other hand, if  both 
particles are infeasible, the particle with a lesser number of  constraint violations is a better solution. 

 
3.2 MOPSO-CD for Solving Nash Game 

During a Nash game, each player uses the MOPSO-CD to improve his own criterion along generations constrained by 
strategies of  the other player.  In applications, design variables are geometrically split between players who exchange 
symmetrically their best strategies (or best chromosomes) at each generation.  Such a process is continued until no player can 
further improve its criterion.  At this stage, the system has reached the Nash equilibrium.  One of  the evident properties of  
N/MOPSO-CD is their inherent parallel structure during evolution.  A flow chart of  the N/MOPSO-CD is shown in Figure 

2.  Based on Eqs. (1’) and (2’), and both 
, ,

Max
N L m

   
1

(
m

N
     

2
)L L N

    ; s. t. 
2

[ /
r

L   1/ ( 1)
(1 )]

   0 ,

0, 0,1    0,2  0,   0  , 0m  , 0 1, 0N    in Eq. (7) and  , ,Max N L r ( 1Nr
      

) (1 )2L L
    ; s. t. 0,   0,1   

2
0,   0  , 0,  0r  , 0,N   0L   in Eq. (8) are for 1 vs. 1 

M-R Nash game.  Both Eqs. (7) and (8) are the string representing the potential solution for a dual objective optimization, 
where N  corresponds to the first criterion, and L  and   to the second one.  However, the problem become to 

optimize , ,Max N L   ( , , )s N L   ( , , ) ( , , )m mN L N L      ; s. t. 2

1/( 1)
[ / (1 )] 0rL


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
   , 

1
0, 0,  

0
r

  , 0 1,   0N  , 0L  , where 
1 2

( , , ) ( )
m m

N L N L L N
              and ( , , )

r
N L    

1 2
( )

r
N L

        (1 )L  .  In Figure 2, Player 1 optimizes * *

1 0 0
( , , )

m
N L   in generation 1 (Gen. 1), that is, searching 

all 
1

N ,  while *

0
L  and *

0
  are the optimal values by randomly choose * * *

0 0 0
, ,N L   for * * *

0 0 0
( , , )

s
N L  .  Simultaneously,  

Player 2 optimizes *

0 1 1
( , , )

r
N L   in generation 1  (Gen. 1), that is, searching both of  all 

1
L  and 

1
 ,  while *

0
N  is the 
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Optimize *

0 1 1( , , ) r N L  

Optimize * *
1 1( , , )  m k k kN L

Result is * * * * * * * * *( , , ) ( , , ) ( , , )s k k k m k k k r k k kN L N L N L        

Optimize * *

1 0 0( , , ) m N L  

Optimize * *

2 1 1( , , ) m N L  Optimize *

1 2 2( , , )r N L   

Optimize *
1( , , ) r k k kN L  

Initialization of  Pop. 1 and Pop. 2 

optimal values by randomly choose * * *

0 0 0
, ,N L   for * * * * * * * * *

0 0 0 0 0 0 0 0 0
( , , ) ( ( , , ) ( , , ))

s m r
N L N L N L       . Smarmily, Player 1 

optimizes * *

2 1 1
( , , )

m
N L   in Gen. 2, that is, searching all 

2
N , while both *

1
L  and *

1
  are the optimal values based on the 

previous generation of  * * * * * * * * *

1 1 1 1 1 1 1 1 1
( , , ) ( ( , , ) ( , , ))

s m r
N L N L N L       .  At the same time, Player 2 optimizes 

*

1 2 2
( , , )

r
N L   in Gen. 2, that is, searching both of  all 

2
L  and 

2
 , while *

1
N  is the optimal values also based on the 

previous generation of  * * *

1 1 1
( , , )

s
N L  .  Following this process to Gen. K, the result become to * * *

( , , )
s k k k

N L   
* * *

( , , )
m k k k

N L  * * *
( , , )

r k k k
N L  .  Here, each player has his own MOPSO-CD algorithm with different population.  Nash 

equilibrium is reached when neither player can further improve its criterion (Eyi et al., 1996).  Similarly, the solution 

procedures in the case of  U vs. V of  M-R with N/MOPSO-CD are setting N ,  , 
1
 , 

2
 ,  ,  ,  L and   be the 

multi-item, that is, ,  
i

N  1, 2, ...,i U (or '
U ), ,  

ij
L  1, 2, ...,i U (or '

U ), 1, 2, ..,j V , 
1i

 , 1, 2, ...,i U , 
2 ij

 , 

1, 2, ...,i U , 1, 2, ...,j V , 
ij

 , 1, 2, ...,i U , 1, 2, ...,j V , 
ij
 , 1, 2, ...,i U , 1, 2, ...,j V   and 

ij
 , 

1, 2, ...,i U , 1, 2, ...,j V .  To identify the equilibrium of  Eqs. (15) and (16) for the case of  1 vs. 1 of  M-R with 

N/MOPSO-CD is shown in Figure 2. 
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Figure 2 N/MOPSO-CD Flowchart for  ,m r  Objective Functions (Wang and Periaux, 2001) 
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3.3 NSGA II for Solving Nash Game 

There are three core mechanisms introduced in NSGA and NSGA-II are briefly summarized below.  More details can 
be found in Deb (2001) and Deb et al., ( 2002). 
 

3.3.1 Non-dominated Sorting 

Non-dominated sorting proceeds as follows.  First of  all, non-dominated individuals in the current population are 
identified.  The non-dominated individuals are those who are not inferior to any other individuals in the population with 
respect to every objective.  The same fitness value is assigned to all the non-dominated individuals.  The individuals are 
then ignored temporarily, and the rest of the population is processed in the same way to identify a new set of 
non-dominated individuals.  A fitness value that is smaller than the previous one is assigned to all the individuals belonging 
to the second non-dominated front.  This process continues until the whole population is classified into non-dominated 
fronts with different fitness values. 
 
3.2.2 Elitism 

Unlike its predecessors, NSGA-II allows the parents to compete with offspring.  In each generation, an offspring 
population of size N is generated from a parent population of the same size. The two populations are combined, and the first 
N best-fit individuals from the combined population are chosen to be part of the next generation population. The main 
purpose of this mechanism is to prevent fit individuals found in earlier generations from being lost easily. 
 
3.3.3 Diversity-Preservation 

The original NSGA uses the well-known fitness-sharing approach to preserve the diversity among the Pareto-optimal 
solutions.  Although the fitness-sharing approach is found to maintain diversity in a population, the performance largely 
depends on its associated parameter.  To avoid this sensitivity, Deb et al. (2002), have introduced a “crowding distance 
comparison” approach.  First of all, the crowding distance surrounding a particular solution is measured.  The crowding 
distance is given by the perimeter of the cuboids formed by using the nearest neighbors in the same non-dominated front as 
the vertices.  Secondly, the crowding distance is used to break a tie when two solutions have the same fitness, i.e. they 
belong to the same non-dominated front.  A solution with a higher crowding distance becomes a winner.  By preferring 
the solution with a higher crowding distance, this mechanism encourages population diversity. 

NSGA II (Deb, 2001; Deb et al., 2002) also possess robustness for capturing the global solution of  multi-modal 
optimization problems.  Therefore, NSGA II can also be like MOPSO-CD used to this study.   
 
3.4 Settings of MOPSO-CD or NSGA II for Solving Nash Game 

In this research, all variables, N , L , and   in Eqs. (7) and (8) are the decision variables that will be determined as 
solutions of  problems and they are set as generated random numbers to check various combinations for the near-optimal 
solution.  The objective functions and constraints in Eqs. (7) and (8) are framed clearly, the decision variables, in this 
research, are randomly generated to check the validity of  performing the iterations of  MOPSO-CD or NSGA II. 

In MOPSO-CD or NSGA II computations, the objective functions of  two-player M-R Nash game with two parameters 

vector [
m

 ,  , 
1
 , 

2
 ,  ,  , N , L ,  ] for a manufacturer and [

r
 ,  , 

1
 , 

2
 ,  ,  ] for retailers, and the 

variables vector in vector, [ N , L ,  ]can be represented as 
m

  ([
m

 ,  , 
1
 , 

2
 ,  ,  , N , L ,  ])  for 

manufacturer and 
r

  ([
r

 ,  , 
1
 , 

2
 ,  ,  , N , L ,  ]) for retailer.  The terms of  objective functions 

m
  ([

m
 , 

 , 
1
 , 

2
 ,  ,  , N , L ,  ]) and 

r
  ([

r
 ,  , 

1
 , 

2
 ,  ,  , N , L ,  ]) should be adequately designed for the 

maximal optimization because it is the major source for fitness evaluation in the MOPSO-CD or NSGA II. 
 
3.5 Objective Functions for N/MOPSO-CD and N/NSGA II 

The objective functions, f, of two-player M-R Nash game with two parameters vector [
m

 ,  , 
1
 , 

2
 ,  ,  ] for 

manufacturers and [
r

 ,  , 
1
 , 

2
 ,  ,  ] for retailers, and the variables vector in vector, [ N , L ,  ] can be 
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represented as 
m

 ([
m

 ,  , 
1
 , 

2
 ,  ,  , N , L ,  ]) for manufacturers and 

r
 ([

r
 ,  , 

1
 , 

2
 ,  ,  , N , L , 

 ]) for retailers.  The terms of objective functions 
m

 ([
m

 ,  , 
1
 , 

2
 ,  ,  , N , L ,  ]) and 

r
 ([

r
 ,  , 

1
 , 

2
 ,  ,  , N , L ,  ]) should be adequately designed for the maximal optimization because of it is the major source for 

fitness evaluation in the MOPSO-CD or NSGA II.  In U  vs. V  M-R Nash game, for example, the variables of N , 
L  and  denote the solution vectors with summation of U variable (or numbers of manufacturers) and V  variables (or 

numbers of retailers) for the example of case of  U vs. V of  M-R Nash game and they can be expressed as a set of { iN , ijL , 

ij ; i = 1, 2, …, U , j = 1, 2, …, V }.  In the operations of MOPSO-CD and N/NSGA II, for example, each variable 

iN  represents an individual’s chromosome and variable vector [ iN , ijL , ij ; i = 1, 2, …, U , j = 1, 2, …, V ] 

represents a complete individual, and each individual is assigned a fitness value according to the evaluation from functions 

m
 ([

m
 ,  , 1i , 

2 ij
 , 

i
 , 

ij
 , 

i
N , ,

ij
L  ij , 1, 2, ...,i U , 1, 2, ...,j V ,]) and  

r
 ([

r
 ,  , 

1i
 , 

2 ij
 , 

i
 , 

ij
 , 

i
N , ,

ij
L  

ij
 , 1, 2, ...,i U ; 1, 2, ...,j V ]), where 

i
N , ,

ij
L and 

ij
 ; 1, 2, ...,i U  and 1, 2, ...,j V  are the 

particles to solve N/MOPSO-CD or genes in N/NSGA II algorithms. 
 

3.6 Algorithm Procedure of Nash Game with MOPSO-CD and NSGA II 

The algorithm procedure of Nash Game with MOPSO-CD and NSGA II was proposed.  The pseudo-code is 
shown in the following: 

Consider case of U vs. V  

For each manufacturer 

 Random generate iN ,1 i U  ,  

For each retailer 

 Random generate ijL  and ij , 1 i U  , 1 j V    

Initialize sets [1]R  and [2]R   

For each [0]P  in manufacturer and retailer //* [0]P  is initial population *// 

 If [0]P  is Manufacturer 

  Set [0]P 's iN  as variable and fix others '
iN  and all ijL  and ij  

 Else if [0]P is Retailer 

  Set [0]P 's ijL , ij  and as variables and fix other iN  and all '
ijL  and '

ij  

 Optimize for largest s by MOPSO-CD/ NSGAII 

 Save optimized iN , ijL and ij  into [1]R   

While best_ [ ]P i ’s is not converged 

 For each [ ]P i  in manufacturer and retailer 

  For each set r in [ ]P i  

   If [ ]P i is Manufacturer 

    iN  as variable, all others '
iN , ijL and ij  in r  are fixed 

   Else if [ ]P i  is Retailer 

    ijL  and ij  as variables, all other iN , '
ijL  and '

ij  in r are fixed 

   Optimize for largest s  by MOPSO-CD/ NSGAII 

   Save the largest_ s  and its iN , ijL and ij   

       Select the largest_ s s  as the decision made by m  and r  

   Save related iN , ijL and ij into [2]R  

   Select best s  in [2]R  as Best_ s  

   Clear R 
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   Move all elements in [2]R  to [1]R  

   The lastest iN , ijL  and ij  are the solution. 

 
4. CASE STUDY FOR VALIDATION OF NON-COOPERATIVE ADVERTISING TWO-PLAYER AND 

MULTI-PLAYER GAME-SOLUTION IN SUPPLY CHAIN USING MOPSO-CD OR NSGA II  

4.1 Optimum Solution Using N/MOPSO-CD or N/NSGA II for the Case of 1 vs. 1 M-R Nash Game 

One model of  digital camera from a camera manufacturer which is located in the northern part of  Taiwan has been 
considered to conduct the non-cooperative advertising with its 1 retailer.  The following data are collected for validating 
this study.  The structure of  case study is as follows. 
1. Number of  manufacturer is 1, 
2. Number of  retailer, V = 1,  

 The MOPSO-CD program used conditions are: 
1. Population size: 100,  
2. Maximum generation: 100, 
3. Archiving size: 500, 
4. Inertia weight w = 0.4, 
5. Acceleration coefficients 1c  = 1.0, 

6. Acceleration coefficients 2c  = 1.0 

7. Probability of  mutation (Pm) is 0.5, and 

8. Terminate at 610)( xf . 

The SNGA II program used conditions are: 
1. Population size: 100,  
2. Maximum generation: 200,  
3. Probability of  crossover (Pc): 0.9, 
4. Probability of  mutation (Pm): 1.00 and 

5. Terminate at 610)( xf . 

The input parameters for both case studies of  two-player (or 1 vs. 1 M-R) Nash game is given in Table 1.  Table 2 is 
the lower-bound and upper-bound of  variables, N , L  and   for the Cases of  1 vs. 1 M-R Nash game using 
N/MOPSO-CD or N/SNGA II. 

These parameters are also empirically collected by the case companies and these data obtained by using the regression 
model of  statistics.   

The optimal solution and results, for the case study of  two-player (or 1 vs. 1 M-R) Nash game is obtained using analytic 
approach, N/MOPSO-CD or N/NSGA II are given in Tables 3  In Table 3, the optimum solutions using analytic 
approach, N/MOPSO-CD or N/NSGA II for the Case of  1 vs. 1 M-R Nash game are very close, that is 

Analytic ApproachN = 

347,425.865, and N/MOPSO CDN   = 347,121.293  and N/NSGA IIN = 347,193.003.  Similarly, 
Analytic ApproachL = 26,452.325, 

N/MOPSO CDL  = 26,022.719, N/NSGA IIL  26,011.209, 
Analytic Approach  0 %, N/MOPSO CD   0 % and N/NSGA II  0 %, this can make 

sure that both N/MOPSO-CD or N/NSGA II C# programs can be used to the Case multi-player M-R Nash game.  
Consequently, optimum solutions using N/MOPSO-CD or N/NSGA II for the Case of  1 vs. 1 M-R Nash game are shown 
in Table 4 and their objective values, m , r  and s  are also very close. 

 
Table 1 Input Parameters for the Case of 1 vs. 1 M-R Nash Game 

m  

(US$) 
r  

(US$) 

  
(Pieces) 

1  2  

150 300 1,254,000 30,000 2,000 
   - - - 

0.122 0.18 - - - 
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Table 2 The Lower-bound and Upper-bound of Variables N , L  and   for the Case of 1 vs. 1 M-R Using 
N/MOPSO-CD or N/NSGA II 

        Range 
Variable  

Lower-bound Upper-bound 

N (US$) 2,80,000 400,000 
L (US$) 10,000 30,000 
  (%) 0 100 

 
Table 3 Optimum Solutions Using Analytic Approach, N/MOPSO-CD or N/NSGA II for the Case 1 vs. 1 M-R Nash 

Game 

 
Optimum Solution 

Analytic Approach N/MOPSO-CD N/NSGA II 
N (US$) 347,425.865 347,121.293  347,193.003 
L (US$) 26,452.325 26,022.719 26,011.209 
  (%) 0.000 0.000 0.000 

 

Table 4 Optimal Objective Values of the Case of+ 1 vs. 1  

 Analytic Approach N/MOPSO-CD N/NSGA II 

m  186,114,750.241 186,729,715.844 186,729,678.768 

r  374,955,135.251 374,205,719.711 374,205,756.836 

s  560,069,885.491 560,935,435.554 560,935,435.604 
 

4.2 Optimum Solution Using N/MOPSO-CD or N/SNGA II for the Case U vs. V M-R Nash Game  

Two models of  digital camera from two camera manufacturers which are located in the northern and middle parts of  
Taiwan have been considered to conduct the cooperative advertising with 3 retailers.  The following data are collected for 
validating this study.  The structure of  case study is as follows. 
1. Number of  manufacturers, U = 2, 
2. Number of  retailers, V = 3,  

The MOPSO-CD program used the conditions are: 
1. Population size: 100,  
2. Maximum generation: 100, 
3. Archiving size: 500, 
4. Inertia weight w = 0.4, 
5. Acceleration coefficients 1c  = 1.0 

6. Acceleration coefficients 2c  = 1.0 

7. Probability of  mutation (Pm) is 0.5 and 

8. Terminate at 610)( xf . 

The SNGA II program used conditions are: 
1. Population size: 100,  
2. Maximum generation: 200,  
3. Probability of  crossover (Pc): 0.9, 
4. Probability of  mutation (Pm): 1.00 and 

5. Terminate at 610)( xf . 

The input parameters for this case study are given in Table 5.  These parameters are empirically collected by the case 
companies and these data obtained by using the regression model of  statistics.  Table 6 is the lower-bound and 
upper-bound of  variables iN , ,ijL , ij ; 1, 2, ...,i U , 1, 2, ...,j V for the Cases of  2 vs. 3 M-R Nash game using 

N/MOPSO-CD or N/NSGA II. 
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The optimal solution and results for the case study of  multi-player (or 2 vs. 3) M-R Nash games are obtained using 

N/MOPSO-CD or N/NSGA II is shown in Table 7.  In Table 8, the optimum objective values of  , N/MOPSO CDm  

, N/NSGA IIm , , N/MOPSO CDr    , N/NSGA IIr , , N/MOPSO CDs   , N/NSGA IIs ,individually, are very closed.  This can 

make sure that the N/MOPSO-CD or N/NSGA II C# programs can be used to the Case of  2 vs. 3 M-R Nash games.   
 

Table 5 Input Parameters in the Case of 2 vs. 3 M-R Nash Game 

 
Table 7 Optimum Solution Using N/MOPSO-CD or N/NSGA II for the Case of 2 vs. 3 M-R Nash Game 

 Optimum Solution 

N/MOPSO-CD N/NSGA II 

1N (US$) 347,359.796 346,769.894 

2N (US$) 398,632.313 398,094.484 

11L (US$) 25,702.718 25,948.587 

12L (US$) 26,121.067 26,163.152 

13L (US$) 17,088.039 16,758.232 

21L (US$) 26,619.941 26,167.339 

22L (US$) 26,601.677 26,167.340 

23L (US$) 17,678.832 17,228.387 

11 (%) 0.231 0.000 

12 (%) 0.122 0.353 

13 (%) 0.644 0.656 

21 (%) 11.582 0.483 

22 (%) 0.365 0.337 

23 (%) 0.371 0.180 

 
Table 8 Optimal Objective Values of  the Case 2 vs. 3  

N/MOPSO-CD N/NSGA II 

m  18,4991,649.646 184,990,451.987 

r  371,465,776.694 371,466,996.559 

s  556,457,426.341 556,457,448.546 
 
5. CONCLUSIONS  

Supply chain management has emphasized the long-term strategic relationship between a manufacturing firm and its 
retailer.  This relationship is that such a partnership makes both the manufacturer and the retailer better off  than before and 
take both parties into a win-win situation through coordination.  Most of  works, such as: JIT purchasing, collaborative 
planning, VMI, third party logistics methods and so on 

m  

(US$) 
r  

(US$) 

  
(Pieces) 

11  21  22  

150 300 1,254,000 30,000 2,000 1,850 

23  1  2  11  12  13  

1,100 0.122 0.122 0.18 0.16 0.15 

21  22  23     

0.18 0.16 0.15    
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to deal with the inter-organizational coordination, have been carried out on coordination mechanisms in the last decade.  
Among those inter-organization coordination mechanisms, non-cooperative advertising is a famous one in supply chain 
domain.  Non-cooperative advertising is often defined as an arrangement whereby a manufacturer pays for some or all of  
the costs of  local advertising undertaken by a retailer who is responsible for selling products made by the manufacturer.  
The main purpose for a manufacturer to utilize non-cooperative advertising is to strengthen the image of  its own brand and 
to increase the short-term sales at the retail lever.  However, non-cooperative advertising is not a specialized kind of  
advertising, instead; it is essentially a financial arrangement under which both parties agree how the costs of  mutual 
promotion are to be defrayed.  They focused on the most prominent aspect of  these plans – the “participation rate”, that 
is, the percentage of  the retailers’ local advertising expenditures that the manufacturer agrees to pay.  The differential 
games can be used to investigate how a manufacturer can design an inter-temporal advertising support program that is 
optimally non-coordinated with his own advertising strategies and the retailer’s advertising efforts.  The reason to use game 
theory is rooted on the fact that many models in supply chains developed from single decision maker’s perspective cannot 
adequately represent the sophisticated competitive and non-cooperative relationships in supply chains, and game theory, a 
tool of  strategy analysis for conflict and non-cooperation, should be a more desirable approach.  In addition, game theory 
has an essential tool in the analysis of  supply chains consisting of  multiple agents with conflicting objectives.   However, 
the application of  game theory to supply chain management is still in its infancy; much more progress will be made soon.  
Therefore, this kind of  research is highly demanded. 

In the different sales response function may yield interesting results in the analysis for systematic non-cooperative 
advertising agreements.  A market response function based on a product could be determined by the manufacturer’s national 
brand image investment and the retailer’s local advertising expenditures.  However, the effects of  the local advertising 
expenditures and brand image investments on sales quantity are limited.  And only when both efforts are exhausted, the 
market saturation level will be attained.  In addition, the participation rate of  local advertising expenditures shared by the 
manufacturer, which is a decision variable for manufacturer in addition to the national brand image investment.  In this study, 
assuming the interactions between long-term branding investments and short-term promotion efforts can be neglected, and 
based on a simple and different market response functions, this study investigated the non-cooperative advertising problem 
under simultaneous Nash game.  Since the analytical solution procedure for multi-player M-R Nash game for 
non-cooperative advertising could be difficult, thus, the MOPSO-CD or SNGA II and was used to the solution procedures.  
Therefore, the major work of  this research is to construct the mathematic models in different market response functions 
associated with the gaming structures, and then employs the N/MOPSO-CD or N/NSGA II to identify the cooperative 
advertising two-player and multi-player M-R Nash game-solution in the Supply Chain.  First of  all, we employ two-player 
analytic approach and N/MOPSO-CD or N/NSGA II for identifying the M-R Nash game-solution.  And then we construct 

U vs. V  multi-player M-R models based on and the two-player market response function with the Nash game-solution 
procedure. 

Three solution approaches are: (1) analytic approach for 1 vs. 1 M-R Nash game problem, (2) the N/MOPSO-CD 

and (3) N/NSGA II for the Case of  U vs. V  M-R Nash game problems.  The input parameters of  case study are 
empirically collected by the examples companies and those data obtained by using the regression models of  statistics.  The 
solution and objective values (see Tables 7 and 8) in this study using N/MOPSO-CD or N/NSGA II with C# programs 
obtained the expected results.  
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