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Abstract The Electromagnetism-like Mechanism (EM) is a metaheuristic algorithm which utilizes an attraction-repulsion 
mechanism to move the sample points (i.e., our solutions) towards optimality. Birbil et al. (2005) have verified that the EM 
algorithm can avoid the solutions leading to the local minimum and move toward the global optimum. This study was 
undertaken to ascertain the effects of using the proposed hybrid EM algorithm in regard to its ability to solve the travelling 
salesman problem (TSP). In this paper, the authors present a hybridization of the EM algorithm and intensive methods which 
includes the Opt method and the 2-opt method to solve TSPs. Furthermore, since the original EM algorithm is designed to 
solve real-value-solution problems, this paper modifies our hybrid EM algorithm with a Random-Key technique for solving 
the TSP which, specifically, is an integer-valued-solution problem. The computational results show that the proposed hybrid 
EM algorithm is capable of solving the TSP. 
 
Keywords Electromagnetism-like mechanism (EM), travelling salesman problems (TSP). 
 
 
1. INTRODUCTION 

Recently, there has been a dramatic increase in the number of publications on combinatorial optimization problems. One 
of the most common problems is the travelling salesman problem (TSP), which is similar to NP-Complete problems. Recently, 
many metaheuristic algorithms have been employed to solve TSPs. The metaheuristic algorithms include: simulated annealing 
(Kirkpatrick et al., 1985; Lo and Hus, 1998; Tian and Wang, 2000; Meer, 2007), Tabu search (Knox, 1989; Glover, 1990; 
Knox,1994), genetic algorithms (Potvin, 1996; Jiao and Wang, 2000; Baraglia et al., 2001; Moon et al., 2002; Yang et al.,2008), 
scatter search (Liu, 2007; Liu, 2008), particle swarm optimization (Shi et al., 2007; Marinakis and Marinaki, 2010; Marinakis et al., 
2010), and ant colony optimization (Tsai et al., 2004; Cheng and Mao, 2007; López-Ibáñez and Blum, 2010; Ghafurian and 
Javadian, 2011). The resulting solutions from these metaheuristic algorithms are capable of finding solutions near the optimum 
and even the optimal solutions in some special cases. As such, the solutions from the metaheuristic algorithms may not always 
be optimum but they are cost-effective in terms of time and computer processing and memory loads.  

The Electromagnetism-like Mechanism (EM) algorithm is a metaheuristic algorithm proposed and developed by Birbil 
and Fang (2003). The EM algorithm simulates the attraction-repulsion mechanism in electromagnetism theory. The EM 
algorithm has been tested and verified; it can converge rapidly (in terms of the number of function evaluations) on the global 
optimum and  produce highly efficient results in  regard to problems showing varying degrees of difficulty (Birbil and Fang, 
2003; Birbil et al., 2005). 

Also, the EM algorithm was applied to NP-Hard problems such as: scheduling problems (Debels and Vanhoucke, 2006; 
Maenhout and Vanhoucke, 2007; Chang et al., 2009; Naderi et al., 2010; Jamili et al., 2011), TSP problems (Javadian et al., 2008), 
VRP problems (Yurtkuran and Emel, 2010), etc, where the results were promising. However, many metaheuristic algorithms 
have been proposed to solve TSPs, but little attention has been given to the EM algorithm for solving them. Although 
Javadian et al. (2008) proposed a discrete binary version of the EM algorithm for solving small size TSPs having a smaller 
number of iterations, medium to large size TSPs have not been tested. Thus, we were motivated to apply the EM algorithm to 
solve a wider variety of travelling salesman problems.  

This paper presents a hybridization of the EM algorithm and intensive methods which include the Opt method and the 
2-opt method in the context of solving TSPs. Furthermore, since the original EM algorithm is designed to solve 
real-value-solution problems, this paper proposes to modify our hybrid EM algorithm with a Random-Key (RK) technique to 
solve the TSP, which is an integer-valued-solution problem.  
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The rest of this paper is organized as follows. Section 2 describes the TSP and lays out its mathematical formulation. The 
hybrid EM algorithm with the RK technique and intensive K-opt methods are proposed in Section 3. Computational results 
are given in Section 4. We offer conclusions in Section 5. 

 
2. TRAVELLING SALESMAN PROBLEMS 

The TSP is a classical combinatorial optimization problem, which is simple but very difficult to solve. The simplest TSP 
involves finding an optimal tour, i.e., the shortest tour wherein a salesman is able to visit n cities and finally return to the point 
of departure. Furthermore, each city is visited exactly once and the inter-city distances are symmetric and known. Here, we 
discuss the simplest TSP by converting the graph into a mathematical formulation. The constituents of the TSP are such that: 
n is the number of cities indexed by i and j, , {1, , }i j n  ; cij is the distance between city i and j; xij is the decision variables. 
The xij equal to 1 when arc (i, j) is included in the tour, and equal to 0 otherwise. The TSP can be represented as follows:   

 
The objective function (1) represents the total tour for the travelling salesman. Constraints (2) and (3) ensure that each city 

is visited exactly once. Constraint (4) denotes the solution where we found that (xij) was located in the feasible region X. 
Constraint (5) denotes that the xij are the binary numbers of the integer. 
 
3. HYBRID ELECTROMAGNETISM-LIKE MECHANISM METAHEURISTIC ALGORITHM FOR USE 

WITH TRAVELLING SALESMAN PROBLEMS 

Birbil and Fang (2003) constructed the EM that is compatible with the attraction-repulsion mechanism of the 
electromagnetism theory and as such, is able to process each sample point (solution) as it is released into a space as a charged 
particle whose charge relates to the objective function value. The charge determines the magnitude of attraction or repulsion of 
the point over the sample population, i.e., the better the objective function value, the higher the magnitude of attraction. After 
calculating these charges, we can find a direction that is derived from a combination force, such as electromagnetic forces, 
which is calculated by adding, in a vector-wise manner, the forces from each of the other points calculated separately. The 
attraction directs the points towards better regions, whereas repulsion allows particles to exploit the unvisited regions. 

 
3.1 General Scheme 

We apply the EM to the following global optimization problems with bounded variables: 
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Table 1. General scheme 

ALGORITHM  EM ( m, MAXITER, LSITER, δ ) 
m : number of sample points 
MAXITER: maximum number of iterations 
LSITER: maximum number of local search iterations 
 : local search parameter,  ∈ [0,1] 
1.   Initialize( ) 
2.   iteration ← 1 
3.   while (iteration< MAXITER ) do 
4.         Local(LSITER,   ) 
5.         F←CalcF() 
6.         Move(F) 
7.         iteration ← iteration +1 
8.   end while 

 
3.1.1 Initialize 

 
Table 1 illustrates the General Scheme of the EM algorithm. The procedure initialize generates m sample points (solutions) 

randomly from the feasible domain, which is an n dimensional hyper-cube. Each coordinate of a point is assumed to be 
uniformly distributed between the corresponding upper bound and lower bound. After a point is sampled from the space, the 
objective function value for the point is calculated using the function pointer f (x). The procedure ends with m points identified, 
and the point that has the best function value is stored in xbest. Notably, the words particle and point are interchangeably used. 
 
3.1.2 Local search 

 
The procedure local search is used to gather the local information for a point xi. The procedure is as follows: first, a length is 

calculated by the maximum difference of each dimension’s upper and lower bound. Here, the procedure makes use of the 
parameter δ ∈ [0, 1] to derive a feasible random length (length). Second, a temporary point y is used to store the initial point xi 
and let the point y move along the direction according to the feasible random length coordinate by coordinate. Next, if the 
point y observes a solution within the LSITER iterations, the point xi is replaced by y and the neighborhood search for point xi 
ends. Finally, the xbest is updated. 

 
3.1.3 Total force calculation 

 
Cowan (1968) suggested that the force exerted on a point via other points is inversely proportional to the distance between 

the points and directly proportional to the product of their charges; the total force on each particle is calculated in the spirit of 
Coulomb’s Law. The charge of each point, qi, determines point i’s power of attraction or repulsion. This charge is evaluated by: 

 
where f (xi) is the objective function value of each point xi and the current best point xbest in the population has better 

objective function values f (xbest) resulting in higher charges. The parameter n is the dimension of the solution space. Notice that, 
unlike electrical charges, no signs are attached to the charge of an individual point in Equation (7). 

After calculating the charge of each point  or solution, the total force Fi exerted on point xi is computed by the following: 
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3.1.4 Move along the total force 
 
After evaluating the total force Fi, the point is designed to move in the direction of the force by a random step length in 

Equation (9). Here, two parameters must be defined: one is the random step length, λ, and is assumed to be uniformly 
distributed between 0 and one; the other is the RNG whose components denote the allowed feasible movement toward the 
upper bound uk, or the lower bound, lk, for the corresponding dimension. According to the above mechanism, EM ensures 
that points have a nonzero probability with regard to the unvisited regions along this direction.   

 
3.2 The Modified EM with a Random-Key for the TSP 

As we know, the EM algorithm is designed for real-value-solution problems. In order to find the integer-valued solution of 
the TSP, we use the Random-Key (RK) technique. In RK representation, the kth dimension’s value is a priority value for the kth 
activity. Figure 1 demonstrates a 10-dimension solution. Values of dimension 1 to 10 are shown in Figure 1. Then, we apply the 
RK technique to sort these values in ascending order. Thus, the sequence at position 1 is 10 means we can schedule City 10 in 
the beginning and City 3 in the last position. Notably, through the RK technique, the modified EM algorithm is capable of 
solving different kinds of sequencing problems. 

Here, we perform a tour of the TSP representation via RK form. Through this process, we can observe Constraints (2) and 
(3). Because the priority of the city is taken according to the value which it is given, the method gives an index such that a lower 
value has a higher priority in the tour. In RK form, a solution corresponds to a point in the Euclidian space where each 
dimension is a parameter’s value, similar to the representation which EM uses. Consequently, we change the value of each 
dimension according to the electromagnetic force which corresponds to the objective function value. The modified EM for 
the TSP will be detailed below. In Initialization, because we want to decrease the solution space of the search space, we set the 
lk=1 and uk=n (n means we have n cities) and randomly produce priority values for each dimension. Through this procedure, 
we can obtain the feasible priority structure of a tour. In Total force calculation, we determine the charge qi and total force Fi of the 
solution xi according to Equations (7) and (8). We change the priority base on the value after using the Move along the total force 
method. Table 2 displays a tour of RK form found after applying the serial methods of our modified EM algorithm. 

 
 
 

 Activities 
(Position) 1 2 3 4 5 6 7 8 9 10 

Before 8.28  6.34  2.30  1.35  4.11  4.03  5.52  5.11  4.02  3.12  

 (a) Value of activities 

After 10 9 2 1 6 5 8 7 4 3 

 (b) Schedule list 

Figure 1. A demonstration of the RK technique with a 10-dimension solution 
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Table 2. Illustration an RK form of the modified EM algorithm 
i
k

x   8.28  6.34  2.30  1.35  4.11  4.03  5.52  5.11  4.02  3.12  

Initial Tour (City) 10 9 2 1 6 5 8 7 4 3 
i

k

i
k

F

F
  0.03  0.04  -0.04  -0.07  -0.05  -0.01  0.04  0.01  0.01  -0.01  

( )
i

i k
k i

k

F
x RNG

F
    0.28  0.88  -0.30  -0.15  -0.92  -0.23  0.98  0.36  0.41  -0.09  

i i i
k k k

x x x    8.56  7.22  1.99  1.21  3.20  3.80  6.50  5.48  4.43  3.04  

New Tour (City) 10 9 2 1 4 5 8 7 6 3 

 
3.3 Hybridization of Modified EM algorithm and Intensive Methods 

In this section, we introduce two intensive methods which are the Opt method and the 2-opt method. These methods are 
similar to the tour improvement procedures and significantly improve the efficiency of the algorithm. A detailed discussion will 
be presented later.  

 
3.3.1 The Opt Method 

 
The Opt method is one of the tour improvement procedures which is used. Two main mechanisms, namely, 2-opt and 

4-opt are integrated into the Opt method. Figures 2 and 3 each show examples of 2-opt and 4-opt exchange techniques, 
respectively. We use the Opt method to find a new tour even it is not good, and provide an important parameter, Ls, for the 
EM algorithm. This parameter, Ls, is the number of the search iterations for each point, namely, all solutions. We also set a 
probability to choose the 2-opt or 4-opt procedure randomly in the Opt method. We implement the Opt method in Table 3, 
which is the main procedure of the Opt method. Note, the Opt method does not follow all the steps of the original 2-opt and 
4-opt heuristics because we also leave room to accept the solutions which are not good except for the best solution. 

 
 

            
 
 

Figure 2. The 2-opt method 
 
 

     

                        
 
 

Figure 3. The 4-opt method 
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Table 3. Main procedure of  the Opt method 

Opt Method ( Ls, δ ) 
Ls : number of search iterations for each point 

1
 : Opt method parameter, ∈ [0,1] 

2
 : Opt method parameter, ∈ [0,1] 

1.  1iter   
2.   for i=1 to m do 
3.     while iter Ls  do 

4.       
1 2
, (0,1)U    

5.         if 
1

0.5   then 

6.           ( )f y  2-opt()  

7.           if ( ) ( )if y f x  then 

8.             ix y  
9.           else  
10.            if ( i best ) and (

1 2
  ) then    

11.              ix y  
12.        else 
13.          ( )f y  4-opt()  

14.          if ( ) ( )if y f x  then 

15.            ix y  
16.          else  
17.            if ( i best ) and (

1 2
  ) then    

18.              ix y  
19.   1iter iter   
20.    end while 
21.  end for 
22.   arg  min ( , )best ix f x i   

 
 
3.3.2 The 2-opt Method 

 
The 2-opt method is another tour improvement procedure which is used in this study. The main mechanism of this 

method is the 2-opt improvement heuristic. The exchange method of the 2-opt heuristic has been performed in Figure 2 and 
we follow the steps of the prime 2-opt heuristic to improve the tour. Table 4 shows the procedure of the 2-opt method, i.e. the 
2-opt heuristic. 

 
 

Table 4: Main procedure of  the 2-opt method 

2-opt Method () 
1.   for i=1 to m do 
2.    for j=1 to n do 
3.       ( )f y  2-opt()   

4.       if ( ) ( )if y f x  then 

5.          ix y     
6.     end for 
7.   end for         
8.   arg  min ( , )best ix f x i   
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4. ILLUSTRATED EXAMPLES & ANALYSES 

Here, we use the EM algorithm such that the EM algorithm individually utilizes the Opt and the 2-opt methods to solve 
the 16-cities problem. We set up the important parameters: m=10, MAXITER=1000, LSITER=100 and Ls=100. Note that 
there are two variations of the Opt methods, namely, the EM+Opt (1) and the EM+Opt (2). There is a difference between 
these two methods. In the EM+Opt (1), the local search is used in each iteration but in the EM+Opt (2) it is not, i.e., the Opt 
method replaces the local search. The fourth and fifth methods are such that the basic EM utilizes the 2-opt method. There are 
also two variations of the 2-opt methods: the EM+2-opt (1) and the EM+2-opt (2). There is also a difference between these 
two methods. In EM+2-opt (1), the local search is used in each iteration but in the EM+2-opt (2) it is not, i.e., the 2-opt 
method is substituted for the local search. 

 
Table 5. Results of  five different methods 

Method  Best result Average Optimal result % Error Avg. CPU 
  (a) (20 trials) (b) ((a)-(b)) / (b) (seconds) 

Basic EM 
  

3.6129 
 

4.0114 
 

3.2 
(0/20) 

12.90% 
 

0.6815 
 

EM+Opt (1) 
  

3.2 
 

3.3449 
 

3.2 
(8/20) 

0% 
 

5.1689 
 

EM+Opt (2) 
  

3.2 
 

3.3861 
 

3.2 
(5/20) 

0% 
 

5.1323 
 

EM+2-opt (1) 
  

3.2 
 

3.2414 
 

3.2 
(15/20) 

0% 
 

11.3245 
 

EM+2-opt (2) 
  

3.2 
 

3.2497 
 

3.2 
(14/20) 

0% 
 

11.5972 
 

 
After these five methods were used to solve the 16-cities problem, the results are presented in Table 5. From this table, the 

best results are presented; also the optimum is 3.2 for each method except for the Basic EM.  Therefore, the % Error 
corresponding to each revised method is also 0%. In Figure 4, we can see that the convergence lines of the four revised 
methods fell rapidly until they reached 3.2, while the convergence lines of the Basic EM did not. Here, there are two 
phenomena which we should notice. The first phenomenon is that the value of Average is close to 3.2 when the number of 
optimal solutions successfully found is increased. Although the trials are not 100% optimum, we obtain much better results in 
the 16-cities problem while incorporating the Opt and 2-opt methods. The second phenomenon is such that we can obtain the 
optimal results by using the EM+Opt and the EM+2-opt methods, but more time must be spent adding the tour improvement 
procedures. The main reason for this phenomenon is that the Opt or 2-opt methods are iterated for all sample points or 
solutions.  
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Figure 4. Convergence diagram (five different methods) 
 

4.1 Design and Analysis of Experiments for 16 Cities 
 
In this section, we discuss how the parameters in the EM procedure impact the performances of the Basic EM, the 

EM+Opt, and the EM+2-opt methods for the TSPs. Therefore, the 33 factorial designs are analyzed for the three responses of 
the TSPs: the Average, % Error, and Avg. CPU, respectively. First, we select three important parameters in the EM procedure of 
our experiment, each at three levels. The first parameter is m, the number of sample points. The second parameter is 
MAXITER, maximum number of iterations. The last parameter involves the methods which we use to solve the TSP. The 
three levels of the parameters (numerical or text) are defined below (see Table 6). Finally, we can obtain the results of Average, 
% Error and Avg. CPU for the 16-cities problem (see Tables 7-9). 
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Table 6. The levels of  the parameters 

Sample points  
(m)   

Iterations 
 (MAXITER)   

Methods 
  

5  500  EM 
10  1000  EM+Opt 
20  2000  EM+2-opt 

 
 

Table 7. Results of  the Average 

      Methods   

Sample points   Iterations   EM EM+Opt EM+2-opt 
  500  4.4571  3.2994  3.3820  
5  1000  4.0226  3.4320  3.2826  
    2000   4.0460  3.3157  3.3326  
    500   4.1537  3.2826  3.2331  

10  1000  3.9219  3.4320  3.3157  
    2000   3.9664  3.4483  3.2331  
  500  3.5799  3.3489  3.2  

20  1000  3.6837  3.3657  3.2  
    2000   3.4951  3.3326  3.2331  

 

 

Table 8. Results of  the % error 

      Methods   
Sample points   Iterations   EM EM+Opt EM+2-opt 

  500  0.2063  0 0.0518  
5  1000  0.2063  0.0518  0 
    2000   0.1250  0 0 
    500   0.1402  0 0 

10  1000  0.1036  0 0 
    2000   0.1656  0.0518  0 
  500  0.0773  0 0 

20  1000  0.1036  0 0 
    2000   0.0518  0 0 

 

 

Table 9. Results of  the avg. CPU 

      Methods   
Sample points   Iterations   EM EM+Opt EM+2-opt 

  500  0.1250  1.4058  3.3246  
5  1000  0.2402  2.8118  6.4840  
    2000   0.4684  5.6528  13.2870  
    500   0.3590  2.9996  6.6340  

10  1000  0.6868  5.9746  13.2338  
    2000   1.3842  12.1120  26.7278  
  500  1.2246  6.4526  13.5184  

20  1000  2.3966  12.7902  27.0120  
    2000   4.8154  25.7434  54.3338  

 
 
We used the statistical software, MINITAB, to design our experiments. The confidence coefficient is 0.95 (i.e., α=0.05). 

According to the data of these responses, we may consider the ANOVA for the responses under the following tables: (1) the 
ANOVA for Average; (2) the ANOVA for % Error; (3) the ANOVA for Avg. CPU.  

Table 10 is an analysis of variance for the Average. We find that the P value (=0.005) of the Sample points*Methods is less than 
0.05. That is, we have the interaction between the sample points and methods. Since the interaction Sample points*Methods is 
significant, we plot an interaction for it (see Figure 5). From the figure, we have the following observation. When using the EM 
method to solve the 16-cities problem, the sample points equal to 20 have a much lower objective value with regard to the 
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Average and show a significant difference as compared to those where the sample points are equal to 5 or 10. This circumstance 
is not significant when we use the EM+Opt or the EM+2-opt methods. 

Table 11 is an analysis of variance for the % Error. We find that the P values of Sample points (=0.01) and Methods (=0.00) are 
less than 0.05, which means these two factors have main effects for the % Error. Consequently, we have the main effects plot 
of these two factors in Figure 6. From this figure we can clearly understand these two factors’ effects upon the % Error. When 
the sample point is set to 20 or the method is set to the EM+2-opt, we can obtain the smaller value of the % Error than those 
levels of other variables. 

 

Table 10. ANOVA for the Average 

Source DF SS MS F P 
Sample points 2 0.2695  0.1348  15.0900  0.0020  

Iterations 2 0.0158  0.0079  0.8900  0.4490  
Methods 2 2.2738  1.1369  127.3300  0.0000  

Sample points*Iterations 4 0.0304  0.0076  0.8500  0.5320  
Sample points*Methods 4 0.3117  0.0779  8.7300  0.0050  

Iterations*Methods 4 0.0878  0.0220  2.4600  0.1300  
Error 8 0.0714  0.0089    
Total 26 3.0603        

 
 

Table 11. ANOVA for the % error 

Source DF SS MS F P 
Sample points 2 0.0093  0.0047  8.5500  0.0100  

Iterations 2 0.0004  0.0002  0.4000  0.6830  
Methods 2 0.0901  0.0450  82.6500  0.0000  

Sample points*Iterations 4 0.0062  0.0015  2.8400  0.0970  
Sample points*Methods 4 0.0075  0.0019  3.4400  0.0640  

Iterations*Methods 4 0.0021  0.0005  0.9500  0.4850  
Error 8 0.0044  0.0005    
Total 26 0.1200        
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Figure 5. Interactions between the sample points and the methods 
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Figure 6. Main effects of the sample points and the method 
 
 
Finally, Table 12 is an analysis of variance for the Avg. CPU. We find that the P values of Sample points*Iterations, Sample 

points*Methods, and Iterations*Methods are less than 0.05. That means we have interaction between these factors. Figure 7 shows 
the interaction plots for the Sample points*Iterations, Sample points*Methods, and Iterations*Methods. Figure 7 (a) is the interaction 
plot for the Sample points*Iterations, Figure 7 (b) is the interaction plot for the Sample points*Methods and Figure 7 (c) is the 
interaction plot for the Iterations*Methods. In Figure 7 (b), we can see that the sample points equal to 20 have a much higher 
value of Avg. CPU and have significant differences when compared with sample points are equal to 5 or 10 in the EM or the 
EM+Opt methods and in the iterations equal to 1000 or 2000. In Figure 7 (c), the iterations equal to 2000 have much higher 
value of Avg. CPU and have significant differences when compared with iterations equal to 500 or 1000 in the EM+Opt, or the 
EM+2-opt methods. 

 

Table 12. ANOVA for the avg. CPU 

Source DF SS MS F P 
Sample points 2 760.6400  380.3200  29.6300  0.0000  

Iterations 2 679.5600  339.7800  26.4700  0.0000  
Methods 2 1309.0400  654.5200  50.9900  0.0000  

Sample points*Iterations 4 217.9500  54.4900  4.2400  0.0390  
Sample points*Methods 4 357.0700  89.2700  6.9500  0.0100  

Iterations*Methods 4 379.4700  94.8700  7.3900  0.0090  
Error 8 102.6900  12.8400    
Total 26 3806.4300        
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Figure 7. Interactions for the “avg. CPU” 
 
 
4.2 Illustrative Examples with 30, 50, 75 and 100 Cities 

 
We have solved the 16-cities problem and obtained the optimal solutions excluding that of the original EM algorithm. The 

performances of the EM+Opt and the EM+2-opt methods for the 16-cities problems are satisfactory. Therefore, we are 
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interested in using these methods to solve large-city problems. The performance measures of such methods are compared with 
the performance measures of other naturally inspired global optimization methods, such as genetic algorithms (GAs), ant 
colony systems (ACSs), and simulated annealing (SA). Here, we use the EM+Opt or EM+2-opt methods to solve the Oliver30 
(30-cities problem), Eil50 (50-cities problem), Eil75 (75-cities problem) and KroA100 (100-cities problem), which are from 
Dorigo and Gambardella (1997). According to the ANOVA for the data contained in the previous tables (Tables 10 to 12), we 
set up such that Sample points = 20, Iterations = 500, and Methods = EM+Opt. 

Table 13 reports the results of the EM+Opt method which we use to solve the problems. We report the best tour obtained 
from 20 trials in Best result and the best real tour length (Dorigo and Gambardella, 1997) in parentheses. The deviation from the 
optimal result and the average computation time are also shown in the % Error and the Avg. CPU columns, respectively. First, 
we can find that the larger a city we want to solve for, the more time the method will take because that the EM algorithm 
calculates the total force, Fi, and moves coordinate by coordinate. Second, the larger problem we want to solve, the more 
combinatorial solutions we have. Therefore, we find that the values of % Error increase when we want to solve a large-city 
problem. Finally, the performance of the EM+Opt method for solving the large-city problems is not as good as for solving 
small-city problems, but we still can find the optimal solution, i.e., the shortest tour, of the Oliver30 problem.  

 

Table 13. Results of  the EM+Opt method for the large-city problems 

Problem name   
EM+Opt(1)   EM+Opt(2) 

Best tour 
 

% Error 
 

Avg. CPU 
(seconds)  Best tour 

 
% Error 

 
Avg. CPU 
(seconds) 

Oliver30 
(30-cities problem)   423.949 

(423.74) 
0.05% 

  
14.6409 

    
423.74 

(423.74) 
0.00% 

  
14.5004 

  
Eil50 

(50-cities problem)  442.081 
(427.86) 

3.32% 
  

38.3731 
   

437.147 
(427.86) 

2.17% 
  

37.4996 
  

Eil75 
(75-cities problem)  565.278 

(542.31) 
4.24%  

 
83.3598 

   
580.391 
(542.31) 

7.02% 
  

80.5230 
  

KroA100 
(100-cities problem)   22644.8 

(21285.44) 
6.39%  

 
147.7480 

    
22900.2 

(21285.44) 
7.59% 

  
141.1427 

  
 

Here, we also have the comparison of EM with ACS, GA, and SA which are the current state-of-the-art heuristics. We 
report the best real tour length, the best integer tour length (in parentheses) and the number of tours required to find the best 
tour length (in square brackets). Because some papers used the coordinate system for calculating the real valued solutions and 
some papers used the integer distance matrix for calculating the integer valued solutions. Therefore, some of the results of the 
best tours are enumerated in real values. However, some results of the best tours are enumerated in integer values. The value 
of “N/A” means the papers didn’t provide such information. The performance measures used in the ACS, GA and SA are the 
results from (Dorigo and Gambardella, 1997). The EM+Opt method was run for 500 iterations with sample points = 20 and 
had 20 trials. In Table 14, although we do not have the integer results, we can find that the best real tour length (423.74) 
corresponds to the best integer tour length (420). We can see that the result of EM+Opt (2) for Oliver30 problem reached the 
optimal outcome. The result is better than those using GA and SA algorithms. In other problems, we can see from the table 
that the results of the heuristics, except for the ACS, are not as good as the optimum. However, we can gain the numbers of 
tours required to find the best tour length (in square brackets) of the EM+Opt method. The best tour lengths are less than 
those of other heuristics. Notably, we compared the results and the number of tours required to find the best tour length with 
SA and found that we can obtain the better results with a fewer number of tours than SA. 

 

Table 14. Comparison of  EM+Opt with the current state-of-the-art heuristics 

Problem name 
   EM+Opt 

(1) 
EM+Opt 

(2) 
ACS 

 
GA 

 
SA 

 
Optimum 

 

Oliver30 
(30-cities problem)   

423.95 
(N/A) 
[1600]  

423.74 
(N/A) 
[500] 

423.74 
(420) 
[830]  

N/A 
(421) 
[3200] 

N/A 
(424) 

[24617] 

423.74 
(420)  

 

Eil50 
(50-cities problem)  

442.08 
(N/A) 
[7500] 

437.15 
(N/A) 
[1400] 

427.96 
(425) 
[1830]  

N/A 
(428) 

[25000] 

N/A 
(443) 

[68512] 

N/A 
(425) 

 

Eil75 
(75-cities problem)  

565.28 
(N/A) 
[4100] 

580.39 
(N/A) 
[8500] 

542.31 
(535) 
[3480]  

N/A 
(545) 

[80000] 

N/A 
(580) 

[173250] 

N/A 
(535) 

 

KroA100 
(100-cities problem)   

22644.80 
(N/A) 
[9900]  

22900.20 
(N/A) 
[9200]  

21285.44 
(21282) 
[4820]  

N/A 
(21761) 
[103000] 

N/A 
(N/A) 
[N/A] 

N/A 
(21282) 
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5. CONCLUSIONS 
 

Here, a hybrid EM algorithm for TSPs is introduced and performed. We have illustrated examples which can be solved 
using the original EM algorithm and two variant methods, the Opt and 2-opt methods, which are comparable with the original 
EM algorithm. After comparing the results from the computer simulations of these problems, we can conclude that the 
performance of the EM+Opt and the EM+2-opt methods are good insofar as being able to obtain optimal solutions when 
trying to solve the 16-cities problem. According to the analysis of variance, we used the EM+Opt method to solve the 
large-city problems and the performance of this method is shown to be satisfactory for solving the Oliver30 problem. Finally, 
we provided a comparison of the EM+Opt method with the ant colonies systems (ACS), genetic algorithms (GA), and 
simulated annealing (SA) which represent the current state-of-the-art heuristics. When solving the Oliver30 problem, the 
performance of the EM+Opt is better than those using the GA and SA heuristics. In other problems, the  numbers of tours 
required to find the best tour length (in square brackets) for the EM+Opt method are less than those of other heuristics with 
no worse performance measures, especially as compared with SA. The computational results show that the hybrid EM 
algorithm is fully capable of solving the TSP problems. Notably, future research could include a hybridization of the EM with 
other algorithms to achieve even better results.  
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