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Abstract In this paper, a bulk queueing system with multiple vacations under a restricted admissibility policy of arriving 
batches is considered.  Arrivals occur in bulk according to Poisson process.  But all the arrivals are not considered for 
service.  During the busy period of the server, the arrivals are admitted with probability ‘ ’, whereas, with probability ‘  ’, 
they are admitted when the server is idle.  Such assumption is quite meaningful in many real life situations.  The service is 
done in bulk with minimum of ‘a’ customers and maximum of ‘b’ customers.  The server is assigned for secondary jobs 
(vacations) repeatedly when the number of waiting jobs is inadequate to process.   For the proposed queueing system, the 
probability generating function of the steady state queue size distribution at an arbitrary time is obtained. Various 
performance measures are derived.  A cost model for the queueing system is developed.  To optimize the cost, a numerical 
illustration is provided. 
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1. INTRODUCTION 
 

The motivation of the model comes from a real life situation observed in an industry involving Electroplating Process 
(EP). Electroplating is a process that is widely used in the automotive, aerospace, electronics, medical sciences and general 
engineering industries.  In these industries, electroplating is used for corrosion prevention, aesthetic finishes and to apply 
wear coatings to various components, etc.  Some of the electroplating processes are hard chrome plating, nickel plating, 
copper plating, brass plating, etc.  Detailed analysis of electro plating process can be seen in the studies of  Dos Santos et al. 
(1997), Qin et al. (2004), Zhang et al. (2001, 2005), Yang  (2006), Jiang (2007), Bhandari and Ma (2009), Lee (2009), etc. 

The electro plating process (Hard chrome) on the components is done in bulk.  Once the process is started, the bulk 
operation has to continue successively for many batches of metals, otherwise, the operating cost will increase.  Hence, the 
operator will start the electroplating process only when required numbers of pieces have been accumulated for processing.  
After completing an electro plating process, if the number of pieces to be processed is less than the batch quantity, say ‘a’, 
then, the operator stops the process and performs the associated works, such as rinsing, unjigging the components, buffing, 
inspection, etc., Further, in order to meet the customer satisfaction and to deliver the processed electroplates in time, the 
management may reject new order (arrivals) with some probability.  The operator accepts only ‘α’ percent of arriving batch 
when the server is busy, and ‘β’ percent of arriving batch when the server is on vacation.  This can be modeled as 

/ ( , ) / 1XM G a b  queueing system with multiple vacations under a restricted admissibility policy. 
In earlier literature, on different control models of queueing systems namely, control of servers, control of service rates, 

control of admission of customers and control of queue discipline, one can refer Crabill, Gross and Magazine (1977), Rue 
and Rosenshine (1981), Stidham (1985), Neuts (1984) and Huang and Mc-Donald (1988) respectively.  Madan and Abu 
Dayyeah (2002a, 2002b)  studies some aspects of batch arrivals Bernoulli vacation models with restricted admissibility, 
where all arriving batches are not allowed into the system at all-time followed by Madan and Choudhury (2004a, 2004b).    

Borthakur and Medhi (1974) have studied a queueing system with arrival and services in batches of variable size. They 
have derived the queue length distribution for the  / , / 1XM G a b  model.  Krishna Reddy et al. (1998) have discussed  

 / , / 1XM G a b  model with N-policy, multiple vacations, and setup times.  Arumuganathan and Jeyakumar (2005) 

analyzed a bulk queue with multiple vacations, setup times with N – policy and closedown times.  
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Queueing systems with server vacations have attracted numerous researchers since Levy and Yechiali (1975).  One of 
excellent survey of queueing systems with server vacations can be referred to Doshi (1986) and Takagi (1991), which 
includes some applications.   Detailed analysis of some bulk queueing models can be seen in the studies of Chaudhry and 
Templeton (1983) and Medhi (1984, 2002).  A batch arrival / / 1XM G queueing system with multiple vacations were first 
studied by Baba (1986).    

Alnowibet and Tadj (2007) analyzed an M(RA)/G(r; R)(VS)/1(BS) queueing system such that,  customers arrive at a 
service facility according to an orderly Poisson process, but not all arriving customers are allowed to join the system (RA: 
restricted admission). According to the bi-level control policy assumed, an idle period begins when the queue drops below 
level r (quorum size) and a busy period starts as soon as the queue accumulates the same number r. However, after each 
service completion, the server takes a vacation with probability p and starts a new service (if r customers are present) with 
probability (1 - p). The decisions about taking a vacation after each service completion or vacation completion are 
independent.  The authors considered single arrival and bulk service. 

Badamchi Zadeh (2009) discussed a batch arrival queue with optional second service and restricted admissibility, in 
which they considered a queueing system such that customers arrive at the system one by one in a compound Poisson 
process but not all arriving batches are allowed to join the system (restricted admission). Server provides two phases of 
heterogeneous service in succession.  The first phase of service is essential for all customers, but as soon as the essential 
service is completed; a tagged customer leaves the system with probability    1 - (0 1)   , or moves for second phase 

with probability . The second phase has two cases (alternative) where server chooses first and second case with probability 

of 
1 2

p pand respectively such that 
1 2

1p p  .  As soon as the first phase of a customer complete or the second phase 

complete, the server may go for a vacation of random length V with probability (0 1)    or it may continue to serve 

the next customer, if any, with probability 1  , otherwise it remains in the system and waits for a new arrival. The authors 

considered bulk arrival and single service only. 
Madan (2010) analyzed a batch arrival queue, with two stages of heterogeneous service, restricted admissibility of arriving 

batches and modified Bernoulli single vacation policy. In which, arrivals occur according to a compound Poisson process, 
but not all arriving batches are allowed to join the system (restricted admission). Server provides two phases of 
heterogeneous service with each customer having the option to choose one of the two types of first stage service followed 
by one of the two types of second stage service.  In addition, after completion of the two stages of service in succession to 
each customer, the server has the option to take a vacation of a random length with probability p or to continue staying in 
the system with probability 1- p. The author considered bulk arrival and single service only. 

In all the aforesaid models, the authors considered either single arrival batch service with restricted admissibility of 
arrivals or bulk arrival single service with restricted admissibility of arrivals.  Accepting all arrivals to join into the system is 
not realistic always.  This paper is more in general of the above models with restricted admissibility policy.  Once the arrival 
occurs in bulk one can expect that the service can also be done in bulk.  And also it is necessary to allow the server to do secondary jobs (vacation) 
to optimize the overall cost.   

In this paper, the analysis of a bulk queueing system with multiple vacations under a restricted admissibility policy of 
arriving batches is considered. Arrivals occur in bulk according to Poisson process.  But all the arrivals are not considered 
for service. During the busy period of the server, the arrivals are admitted with probability ‘ ’, whereas with probability 
‘ ’, they are admitted when the server is idle.  Such assumption is quite meaningful in many real life situations. The service 
is done in bulk with minimum of ‘a’ customers and maximum of ‘b’ customers. The server is assigned for secondary jobs 
(vacations) repeatedly when the number of waiting jobs is inadequate to the process.  For the proposed queueing system, the 
probability generating function of the steady state queue size distribution at an arbitrary time is obtained.Various 
performance measures are derived. A cost model for the queueing system is developed.  To optimize the cost, a numerical 
illustration is provided. 

The following points are addressed in this paper. Control of admission of customers is considered in a bulk queueing 
vacation model. The model is developed in a most general way so that many existing models become particular case of the 
proposed model. Probability generating function (PGF) of the steady state queue size distribution at an arbitrary time epoch 
is obtained. Some special cases are also discussed.  A cost model has been developed; and an important contribution of this 
is, the study of cost model for a practical situation and to optimize the cost. Various performance measures are also derived. 
 
2. MATHEMATICAL MODEL 
 

In this section, the steady-state equations for the system by treating the remaining service time and remaining vacation 
time as supplementary variables are developed. 

Let X be the group size random variable of the arrival,   be the Poisson arrival rate.  
k

g be the probability that ‘k’ 
customers arrive in a batch and X (z) be its probability generating function (PGF).   An arriving batch is allowed to join the 

queue during the busy period with probability ‘ ’and with probability ‘ ’ during a vacation period.  Let S(x) (s(x)) {
~
( )S  }      
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[S0(x)] be the cumulative distribution function (probability density function) { Laplace-Stieltjes transform}[ remaining 

service time] of service.  Let V(x) (v(x)) {
~
( )V  }[ V0(x)] be the cumulative distribution function (probability density 

function)  {Laplace - Stieltjes transform}[remaining vacation time] of vacation. Nq(t) denotes the number of customers 
waiting for service at time t,  Ns(t) denotes the number of customers under the service at time t. 

 
0,

( )
1,

C t
 

when the server is on vacation
when the server is busy with service

 

 
( )Y t j j th= if the server is on vacation starting from the idle period  

 

 0( , ) Pr ( ) , ( ) , ( ) , ( ) 1 , , 0
ij s q

P x t dt N t i N t j x S t x dt C t a i b j           

 

 0( , ) Pr ( ) , ( ) , ( ) 0, ( ) , 1, 0
jn q

Q x t dt N t n x V t x dt C t Z t j j n          

 
 Now, the following system equations are obtained for the queueing system, using supplementary variable technique: 

 , 0 , 0 ,0

, ,
1

( - , ) ( , ) 1 (1 - ) ( , )

(0, ) ( ) (0, ) ( )

i i i

b

m i l i
m a l

P x t t t P x t t P x t t

P t s x t Q t s x t

  


 

      

    
;    a i b   

   
, , , , -

1

( - , ) ( , ) 1 (1 - ) ( , ) ( , ) ; - 1 & 1
j

i j i j i j i j k k
k

P x t t t P x t t P x t t P x t g t a i b j    


             

   
, , , , -

1

( - , ) ( , ) 1 (1 - ) ( , ) ( , )
j

b j b j b j b j k k
k

P x t t t P x t t P x t t P x t g t    


        
 

 
   

, ,
1

(0, ) ( ) (0, ) ( ) ; 1
b

m b j l b j
m a l

P t s x t Q t s x t j


 
 

       

 1,0 1,0 1,0 ,0
( - , ) ( , ) 1 (1 - ) ( , ) (0, ) ( )

b

m
m a

Q x t t t Q x t t Q x t t P t v x t  


                  

 1, 1, 1,

, 1, -
1

( - , ) ( , ) 1 (1 - ) ( , )

(0, ) ( ) ( , ) ; 1 - 1

n n n
b n

m n n k k
m a k
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 
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      

      
        

 1, 1, 1, 1, -
1

( - , ) ( , ) 1 (1 - ) ( , ) ( , ) ;
n

n n n n k k
k
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

                                

 ,0 ,0 ,0 -1,0
( - , ) ( , ) 1 (1 - ) ( , ) (0, ) ( ) ; 2

j j j j
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, - -1,
1
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n
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k
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
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 , , , , -
1
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n
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k
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
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3. STEADY STATE QUEUE SIZE DISTRIBUTION 

 
 From the above equations, the steady state queue size equations are obtained as follows: 
 

, 0 , 0 , 0 ,0

, ,
1

( - , ) ( , ) ( , ) (1 - ) ( , )

(0, ) ( ) (0, ) ( )

i i i i

b

m i l i
m a l

P x t t t P x t t P x t P x t t

P t s x t Q t s x t

  


 

       

    
 

Dividing both sides by t , and letting the limit 0t  , the steady state equation is obtained as  

, 0 0 0
1

- ( ) ( ) (1 - ) ( ) (0) ( ) (0) ( )
b

i i i m i l i
m a l

d
P x P x P x P s x Q s x

dx
  



 

     ;   a i b                                              (1) 
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Similarly, the remaining steady state equations are obtained as  

 
, , -

1

- ( ) ( ) (1 - ) ( ) ( ) ; - 1 & 1
j

i j i j i j i j k k
k

d
P x P x P x P x g a i b j

dx
   



                                         (2) 

 
, , -

1

- ( ) ( ) (1 - ) ( ) ( )
j

b j bj bj b j k k
k

d
P x P x P x P x g

dx
   


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, ,

1

(0) ( ) (0) ( ); 1
b

m b j l b j
m a l

P s x Q s x j


 
 

                                                   (3) 

1,0 10 10 0
- ( ) ( ) (1 - ) ( ) (0) ( )

b

m
m a

d
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dx
  


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1
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dx
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 
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1
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n
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k
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Q x Q x Q x Q x g n a

dx
   



                                                   (6) 

,0 0 0 -1,0
- ( ) ( ) (1 - ) ( ) (0) ( ) ; 2

j j j j

d
Q x Q x Q x Q v x j

dx
                                                      (7) 

, , - -1,
1
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n
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k

d
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dx
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
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, 1, -
1

- ( ) ( ) (1 - ) ( ) ( ) ; , 2
n

j n jn jn n k k
k

d
Q x Q x Q x Q x g n a j

dx
   


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Taking Laplace-Stieltjes transform on both sides of the equation (1) through (9), we have 

 

0 0 0 0
1

( ) - (0) ( ) - (1 - ) ( ) - (0) ( ) (0) ( );
b
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To obtain the probability generating function (PGF) of the queue size at an arbitrary time, the following probability 

generating functions are defined. 
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Using PGF and taking Z – transforms on the equations (10) – (18), we obtained the following: 
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 

 

 



                                          (23) 

 
Substituting ( - ( ))X z    in equations (20) and (21), we get 

1

1
0

( , 0) ( ( - ( ))) (0)
a b

n
mn

n m a

Q z V X z P z  


 

                                                 (24) 

1

1,
0

( , 0) ( ( ( ))) (0) , 2
a

n
j j n

n

Q z V X z Q z j  





                                                   (25) 

 
Substituting ( - ( ))X z    in equations (22) and (23), we get 

1

( , 0) ( ( - ( ))) (0) (0) ; - 1
b

i mi li
m a l

P z S X z P Q a i b  


 

 
     
 
                                 (26) 

l l

1 1

1 1 0

( , 0) ( ( ( ))) ( , 0) (0) ( , 0) (0)
b b b

b j j
b m mj j

m a j l j

z P z S X z P z P z Q z Q z  
  

   

                          
                      (27) 

 
Substituting Pi (z, 0), a  ≤  i ≤ b-1 in (27) , using (26) and then solving for Pb(z,0),  we get 

( ( )) ( )
( , 0)

( ( ))b b

S X z f z
P z

z S X z

  

  

   
    





                                     (28) 

where 
1 1 1

1 0 0 1
1 1

0 0 1

( ) ( ( - ( ))) (0) (0) - (0) (0)

( ( - ( ))) (0) (0)

b b b b b
j j

mi lj mj lj
i a m a l j m a j l

a b a
n n

mn ln
n m a n l

f z S X z P Q P z Q z

V X z P z Q z

  

  

    

      
  

   

 
    
 

 
   
 

    

 





                                              (29) 

 
From equations (20) and (24), we have 

 
1

1
0

1
( , ) ( ( - ( ))) - ( ) (0)

( - ( - ( )))

a b
n

mn
n m a

Q z V X z V P z
X z

    
   



 

        
                                 (30) 

 
From equations (21) and (25), we have 

 
1

1,
0

1
( , ) ( ( ( ))) ( ) (0) , 2

( ( ( )))

a
n

j j n
n

Q z V X z V Q z j
X z

    
   






            
                              (31) 

 
From equations (22) and (26), we have 

 
1

1
( , ) ( ( - ( ))) - ( ) (0) (0) ; - 1

( - ( - ( )))

b

i mi li
m a l

P z S X z S P Q a i b
X z

    
   



 

              
                             (32) 

 
From equations (23) and (28), we have 
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( ( ( ))) ( ) ( )
( , )

( ( )) ( ( ( )))
b b

S X z S f z
P z

X z z S X z

   


      

    
           

 





   where f(z) is given in (29).                                            (33) 

 
Let P (z) be the probability generating function of the queue size at an arbitrary time epoch. Then,  

 
1

1

( ) ( , 0) ( , 0) ( , 0)
b

i b l
i a l

P z P z P z Q z
 

 

       and let (0)
b

mi i
m a

P p


  , 
1

(0)
li i

l

Q q




 and ci=pi+qi 

 
Using equations (30) – (33) in P(z), we have 
 

  

      
  

 

1

1

0

( ( - ( ))) - 1 -

( ( - ( ))) - 1 ( ( - ( ))) - 1 - ( ( - ( )))

( )
- ( ( - ( ))) ( ) -

b
b i

i
i a

a
b n

n
n

b

S X z z z c

V X z S X z z S X z c z

P z
z S X z X z

   

          

     








              







  



                          (34) 

 
The probability generating function P(z) has to satisfy P(1) =1.   Applying L’Hospital’s rule in (34), then 1   is the 

condition to be satisfied for the existence of steady state for the model under consideration, where
E( )E( )X S

b


  . 

Equation (34) gives the probability generating function P(z) of the number of customers in the queue at an arbitrary time 
epoch, which involves ‘b’ unknown probabilities namely, 

0 1 2 1
, , ,...,

b
c c c c 

.  By Rouche’s theorem, the expression 

( ( ( )))bz S X z     has b-1 zeros inside and one on the unit circle 1z  .  Since P(z) is analytic within and on the unit 

circle, the numerator of (34) must vanish at these points, which gives ‘b’ equations and ‘b’ unknowns.  These equations can 
be solved by suitable numerical techniques.   

The unknown probabilities 
0 1 2 1
, , ,...,

a
q q q q  are expressed in terms of 

0 1 2 1
, , ,...,

a
p p p p 

in theorem (1). which are useful 

to find some of the performance measures.   
 
Theorem:  1 
 
The constants qn involved in P(z) are expressed in terms of pn as, 

0

n

n n i i
i

q b p


  where 0

0
0

1
b







,   

-
1

0
1 -

n

n n j j
j

n

b

b

 








 , where 

i
  is the probability that ‘i’ customers arrive during a 

vacation period. 
 
Proof: 

From the equation (19),  we have 
1 0

( , 0) n
j n

j n

Q z q z
 

 

   

From the equations (24) and (25),  we have 
1

1 0

( , 0) ( ( - ( )))
a

n
j n n

j n

Q z V X z p q z  
 

 

        

 
1

0 0 0

a
n n n

n n n n
n n n

q z z p q z
  

  

      
    

               
1 1

- -
0 0 0

a n a
n n

n i i i n i i i
n i n a i

p q z p q z 
  

   

   
         
   

     

Equating the coefficient of zn, n= 0,1,2,3,…a-1, on both sides of the equation, we have   -
0

n

n n i i i
i

q p q


   
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1

- -
0 0

0
1 -

n n

n i i n i i
i i

n

p q
q

 





 



 

 

Coefficient of pn in qn is 0
0

0
1

b






 

Coefficient of pn-1 in qn is [ 1 +  1 Coefficient of  pn-1 in qn-1]/1-  0 

                                        1 1 0
1

0
1

b
b

 




 


 

Coefficient of pn-2 in qn is [ 2 +  1 Coefficient of  pn-2 in qn-1 

                                                                            +  2 Coefficient of  pn-2 in qn- 2]/1-  0 

           2 1 1 2 0
2

0

( )

1

b b
b

  



 
 


 

Proceeding like this, we get coefficient of p0  in qn  is  
-

1

0
1 -

n

n i n i
i

n

b
b

 








 

Therefore, 
0

n

n n i i
i

q b p


                                                                            (35) 

 
4. PERFORMANCE MEASURES     
 

In a waiting line, it is customary to access the mean number of waiting units and mean waiting time.  In this section, 
some useful performance measures of the proposed model like expected number of customers in the queue E(Q), expected 
length of idle period E(I), expected length of busy period E(B) are derived which are useful to find the total average cost of 
the system.  Also, expected waiting time in the queue WQ, probability that the server is on vacation P(V) and probability that 
the server is busy P(B) are derived. 
 
4.1 Expected Queue Length        
                 

The expected queue length E(Q) at an arbitrary time epoch is obtained by differentiating P(z) at z = 1 and is given by 
  

1
E( ) lim ( )

z
Q P z


  

 

   

   
= 

1 1

1 2

1 12

3 4 5 6
0 0

( - 1) - ( - 1) ( , ) - ( , )
1

E( )
2 E( ) 1 ( , , ) - ( , , ) ( , , ) - ( , , )

b b

i i
i a i a
a a

i i
i i

c b b i i f X S c b i f X S
Q

X T c f X S V f X S V c f X S V f X S V

 

  

 

 
 

 

             

 

 
                               (36) 

 
where 

1 E( )E( )S X S ; T1=b-S1; 1 E( )E( )V X V ;  2 2 2 22 (1)E( ) E ( )E( )V X V X V     
2 2 2 22 (1)E( ) E ( )E( )S X S X S    ;  3 (1)( 1) E( ) ( - 1) - E( )( 2)S X T X b b X S    ; 

f1(X,S)=  (T1)(S1);    f2(X,S)=(T1)(S2)- E(S)S3;    f3(X,S,V)=(T1){2i(V1)(S1)+(S2)(V1)+(S1)(V2)} 
f4(X,S,V)=(S3)(S1) E(V);  f5(X,S,V)=(T1){2i(V1)(T1)+b(b-1)(V1)-(V1)(S2)+(T1)(V2)} 
f6(X,S,V)=(S3)(T1)  E(V); 
 
4.2 Expected Length of Idle Period     
 
Let I be the idle period random variable due to multiple vacation process.   Let U be a random variable such that  U = 0, if 
the server finds at least ‘a’ customers after the first vacation  and U = 1, if he finds less than ‘a’ customers after the first 
vacation.  Then the expected length of the idle period E(I) is given by  
 
E(I) = E(I / U = 0)P(U = 0) + E(I / U = 1)P(U = 1) 
        = E(V)P(U = 0) + (E(V) + E(I))P(U = 1)   

 and since  P(U = 0) + P(U = 1) = 1, solving for E(I), we have  E( )
E( )

P( 0)
V

I
U



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From the equation (24),  
1

1
0

( , 0) ( ( - ( )))
a

n
n

n

Q z V X z p z  




   

1

1
0 0 0

(0)
a

n n n
n n n

n n n

Q z z p z
  

  

             
   , where 

i
 is the probability that ‘i’ customers arrive during a vacation. 

1 1

1
0 0 0 0

(0)
a n a

n n n
n i n i i n i

n n i n a i

Q z p z p w z
   

 
    

             
    

Equating the coefficient of zn; n = 0,1,2,3,…,a-1, we get 
1 -

0

(0)
n

n i n i
i

Q p


   

Now, P
1

-
0 0

( 0) 1 -
a n

i n i
n i

U p


 

    

Thus, 
1

-
0 0

E( )
E( )

1 -
a n

i n i
n i

V
I

p


 




                                     (37) 

 
4.3 Expected Length of Busy Period   
      

Let B be the busy period random variable. A random variable J is defined, as, J=0, if the server finds less than ‘a’ 
customers after the first service and J=1, if the server finds ‘a’ or more customers after the first service. Then, 
E(B) = E(B / J = 0)P(J = 0) + E(B / J = 1)P(J = 1) 
         = E(S)P(J = 0) + (E(S) + E(B))P(J = 1) 
and since P(J = 0) + P(J = 1) = 1, solving for E(B), we get  

 E( )
E( )

P( 0)
S

B
J




 = 
1

0

E( )
a

i
i

S

p





                                       (38) 

 
4.4 Expected waiting time in the queue  
 
 The mean waiting time of the customers in the queue (WQ) can be easily obtained using Little’s formula  

E( )
E( )Q

Q
W

X
                                     (39) 

 
4.5 Probability that the server is on vacation  
 
Let P(V) be the probability that the server is on multiple vacations at time t.  
From the equation (30) and (31), we have 
 

 
 

1

1 0

( ( - ( ))) - 1
( , 0)

- ( )

a
n

j n
j n

V X z
Q z c z

X z

  

 

 

 

 
 
   

 


  

Now,  P(V) = 
1

lim ( , 0)
jz

Q z


   

                   = 
1

0

E( )
a

n
n

V c




 
 
  
                                                (40) 

 
4.6 Probability that the server is busy  
 

Let P(B) be the probability that the server is in the busy period at time t. 
 
From the equations (32) and (33), we have 

 P(B) = 
1

lim ( , 0)
b

iz
i a

P z



   

=
1

1
lim ( , 0) ( , 0)

b

i bz
i a

P z P z





 
   
           
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P(B) = 
 

 1 E( ) (1)
E( )

1 -

b

i
i a

S f
S c

b 






                                                   (41) 

where 
1 1 1

0

(1) E( )E( ) E( )E( )
b a b

i i i
i a i i a

f X S c X V c ic 
  



  

      and 
E( )E( )X S

b


   

 
 

5. SPECIAL CASES 
 

The model so developed is general in nature as the service time and vacation time are arbitrary.  But for practical purposes, 
service time and vacation time with particular distribution is required.  In this section, some special cases of the proposed 
model by specifying vacation time random variable as exponential distribution and bulk service time random variable as 
hyper exponential and Erlangian distributions are discussed. 
Case (i):  Single server batch arrival queue with Hyper Exponential service time and restricted admissibility policy   
 

Now, the case of hyper exponential service time random variable is considered.  The probability density function of 
hyper exponential service time is given as follows,  

( ) (1 )ux wxs x cue c we    , where u and w are the parameters. 

Then,     (1 )
( ( ( )))

(1 ( )) (1 ( ))
w cuc

S X z
u X z w X z

  
 

                  
  

Hence, the PGF of the queue size distribution of this model can be obtained by,  
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Case (ii):  Single server batch arrival queue with Erlangian bulk service time and restricted admissibility policy 
 

Now, the case of k-Erlang service time random variable is considered.  The probability density function of k-Erlang 
service time is given as follows,  
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Hence, the PGF of the queue size distribution of this model can be obtained by,  
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Case (iii):  Single server batch arrival queue with exponential vacation time and restricted admissibility policy   
 

Now, the case of exponential vacation time random variable is considered.  The probability density function of 
exponential vacation time is given as follows,  
( ) xv x e    , where   is the parameter.   
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5.1  Particular Cases 
 

In this section, some of the existing models as a particular case of the proposed model are derived. 
 
Case (i):  If all arrivals are allowed to join the system, i.e. 1 and 1   , then (34) becomes 
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which exactly coincides with the result / ( , ) / 1XM G a b  and multiple vacations without setup time and N – Policy of 
Krishna Reddy et al. (1998). 
 
Case (ii):  If all arrivals are allowed to join the system, i.e. 1, 1   and no bulk service, i.e a = b = 1, then (34) 

becomes 
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which coincides with the result / / 1XM G  queueing  system and multiple vacations without N-Policy of Lee et al.(1994). 
 
Case (iii):  Instead of bulk service, if single service is considered (i.e. a = b = 1), and all arrivals are allowed to join the 
system (i.e. 1 and 1   ), then the probability that the server is in the busy period and the probability that the server is 

on vacation at time t is obtained by  
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           and P (V)   = 
0

E( )V c =1  , is the probability that the system is in vacation period  

where the unknown 
0

c  is obtained from the equation (34) by using the condition P(1) =1, which is
0

1
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c
V


 , where 

0
(1) E( )E( )f X V c   and E( )E( )X S  .    

This coincides with the result MX/G/1 queueing system with multiple vacations of Sun Hur and Suneung Ahn (2005) 
without setup times. 
 
6. OPTIMUM COST 
 
Cost analysis is the most important phenomenon in any practical situation at every stage.  Cost involves startup cost, 
operating cost, holding cost and reward cost (if any).  It is quite natural that the management of the system desires to 
minimize the total average cost and optimize the cost.  Addressing this, in this section, the cost model for the proposed 
queueing system is developed and the total average cost is obtained with the following assumptions: 
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s
C : Startup cost per cycle 

h
C : Holding cost per customer  

o
C : Operating cost per unit time 

r
C  : Reward cost per cycle due to vacation 

 
Since the length of the cycle is the sum of the idle period and busy period, from the equations (37) and (38), the expected 
length of cycle, E( )

c
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Now, the total average cost per unit time is obtained as, 
Total average cost  = Start-up cost per cycle + holding cost of number of customers in the queue per unit time + 

Operating cost per unit time * ρ – reward due to vacation per cycle. 

=
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where 
E( )E( )X S

b


  .   

It is difficult to have a direct analytical result for the optimal value a* (minimum batch size in MX/G(a,b)/1 queueing 
system) to minimize the total average cost.  The simple direct search method to find optimal policy for a threshold value a* 
to minimize the total average cost, is defined. 
 
Step 1:  Fix the value of maximum batch size ‘b’ 
Step 2:  Select the value of ‘a’ which will satisfy the following relation 
  *TAC TAC( ), 1a a a b    

Step 3:   The value a* is optimum, since it gives minimum total average cost. 
 

Using the above procedure, the optimal value of ‘a’ can be obtained, which minimizes the total average cost function.  
Some numerical example to illustrate the above procedure is presented in the next section. 

 
7.  NUMERICAL ILLUSTRATION 
 

In this section, a numerical example is analyzed to illustrate how the management of an electroplating processing system 
can effectively use the results obtained in the sections 3 – 4 to take decision regarding effectively utilizing the idle time and 
to identify the threshold value to minimize the total average cost.   

In the electro plating process centre, the arrival of components (customers) follow Poisson process with arrival rate , 
the process of the components is done in bulk (bulk service).  Once the process is started, the bulk operation has to 
continue successively for many batches of components, otherwise, the operating cost will increase.  Hence, the operator will 
start the electroplating process only when required numbers of pieces have been accumulated for processing (bulk service).  
After completing an electro plating process, if the number of pieces to be processed is less than the batch quantity, say ‘a’, 
then, the operator stops the process and performs the associated works (vacation), such as rinsing, unjigging the 
components, buffing, inspection, etc., Further, in order to meet the customer satisfaction and to deliver the processed 
electroplates in time, the management may reject new order (arrivals) with some probability.  The operator accepts only ‘α’ 
percent of arriving batch when the server is busy and ‘β’ percent of arriving batch when the server is on vacation.  
Addressing this, the consistencies of the theoretical results obtained in the sections   3 – 4 are justified numerically with the 
following assumptions and notations: 

Service time distribution is 2- Erlang with parameter    
Batch size distribution of the arrival is geometric with mean   2  
Vacation time is exponential with parameter     
Minimum service capacity a  
Maximum service capacity b  
Probability of arriving batch will be allowed to join the system during the busy period   
Probability of arriving batch will be allowed to join the system during the vacation period   

7.1  Effects of Various Parameters on the Performance Measures 
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The effects of various parameters such as arrival rates, expected queue length, expected idle period, expected busy period, 

probability that the server is on vacation, probability that the server is busy, different probabilities of admitting arrivals to 
join the system during busy period, during the vacation period and threshold value ‘a’ are analyzed numerically and 
presented in tables 1 – 4 and represented in Figures 1 – 3.   All numerical results are obtained using Mat Lab software.  

The effects of various performance measures for a fixed ‘a’ and ‘b’ with respect to different probabilities of admitting 
arrivals to join the system during busy period are obtained numerically.  These results are tabulated in table 1.  It is observed 
that, if the probability of admitting customers during busy period increases, then 

(1) the expected queue length, the expected busy period and the probability that the server is busy increase 
(2) the probability that the server is on vacation and the expected idle period decrease. 
In table 2, for different arrival rates, the effects of various performance measures for a fixed ‘a’ and ‘b’ are presented.  

From the table, it is clear that, if the arrival rate increases, then 
(1) the mean queue size, the mean busy period and the probability that the server is busy increase  
(2) the mean idle period and the probability that the server is on vacation decrease. 
The effects of threshold value ‘a’ on the expected queue length for various probabilities of admitting customers during 

the busy period are obtained numerically, and these results are tabulated in table 3.  From the table, the following 
observations are made: 

(1) For a fixed threshold value ‘a’, when the probability of allowing customers during busy period increases, the 
expected queue length increases. 

(2) For a fixed probability (  ) of allowing customers during busy period, when threshold value increases, the 
expected queue length increases. 

The effects of threshold value ‘a’ on the expected queue length for various probabilities of admitting customers during 
the vacation period are obtained numerically, and these results are tabulated in table 4.  From the table, the following 
observations are made: 

(1) For a fixed threshold value ‘a’, when the probability of allowing customers during vacation period increases, the 
expected queue length increases. 

(2) For a fixed probability (  ) of allowing customers during vacation period, when threshold value increases, the 
expected queue length increases. 

 
7.2 Optimal Cost  
 

In this section, a numerical example is analyzed to illustrate how the management of an electroplating processing system 
can effectively use the results obtained in the sections 3,4 and 6, to make the decision regarding the threshold value to 
minimize the total average cost.   

It is assumed that, the maximum capacity of an electroplating process is 12 units (i.e. b = 12 pieces).  If the management 
of an electroplating process allows the operator to start the process even for a single piece (i.e. a = 1) without waiting for 
further arrival, clearly, the operating cost will increase.  On the other hand, if they start the process until all 12 pieces arrive, 
the holding cost may increase; hence, there must be some value between 1 and 12 that will optimize the cost.  An optimal 
policy regarding the threshold value ‘a’ which will minimize the total average cost is wished to be obtained. 

The total average costs are obtained numerically with the following assumptions: 
Startup cost       : 4.00      
Holding cost per customer     : 0.25      
Operating cost per unit time     : 7.00 
Reward cost per unit time due to vacation    : 1.00 
The effects of the threshold value ‘a’ on the total average cost with b = 12 are reported in tables 3 and 4, and represented 

in Figures 1(a-b), 2 and 3.   
From the table 3 and the Figure 2, it is clear that, for an electroplating process center with the capacity of 12 pieces (i.e. b 

= 12) at a time, the management has to fix the threshold value a = 5 to minimize the total average cost for the probability of admitting 
pieces during the busy period 0.2 (i.e. 0.2  ) and the probability of admitting pieces during the vacation period 0.6 (i.e. 

0.6  ).   From the table 4 and the Figures 1 and 3, the management has to fix the threshold value a = 4 to minimize the total 
average cost for the probability of admitting pieces during the busy period 0.7 (i.e. 0.7  ) and the probability of admitting 
pieces during the vacation period 0.2 (i.e. 0.2  ).   

Similarly, the management has to fix the threshold value ‘a’ to minimize the total average cost for various probabilities of 
admitting pieces during the vacation and non-vacation periods. 

 
 
 
 
 

Table 1. Probability of admitting customers during busy period (Vs) performance measures 
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(For  =3.5;  =2.0; a = 3; b = 4;  =15;  =0.9) 
  P(B) P(V) E(Q) E(B) E(I) 
0.2 0.5201 0.4799 1.4585 0.6380 0.2336 
0.4 0.5833 0.4167 2.0167 0.7082 0.1845 
0.6 0.6608 0.3392 3.0514 0.8455 0.1423 
0.8 0.7582 0.2418 5.5017 1.1587 0.1086 
1.0 0.8843 0.1157 15.6384 2.3754 0.0820 

 
 

Table 2. Arrival rate (Vs) performance measures 
(For  =2.0; a = 3; b = 4;  =15; =0.8;  =0.7) 
  P(B) P(V) E(Q) E(B) E(I) 
2.5 0.5098 0.4902 2.3981 1.0200 0.1241 
3.0 0.6109 0.3891 3.4015 1.0548 0.1192 
3.5 0.7107 0.2893 5.1706 1.2186 0.1069 
4.0 0.8090 0.1910 8.8425 1.6153 0.0925 
4.5 0.9055 0.0945 20.0994 2.8992 0.0788 

P(V) - Probability that the server is on multiple vacations;  P(B) - Probability that the server is 
busy; E(Q) – Expected queue length; E(I) – Expected idle period; E(B) – Expected busy period 

 
 

Table 3. Threshold value (Vs) expected queue length and total average cost 
for different probabilities ( ) of allowing customers during busy period  

(For =1.0,  =2.5, b=12,  =2,  =0.6) 

a 
E(Q) TAC 

0.2   0.4   0.6   0.8   1.0   0.2   0.4   0.6   0.8   1.0   
1 0.8913 0.9407 0.9947 1.0518 1.3517 2.1966 2.2942 2.3922 2.4907 2.5895 
2 1.0484 1.0911 1.1355 1.1790 1.4665 2.0023 2.1092 2.2158 2.3205 2.4253 
3 1.3468 1.3913 1.4351 1.4765 1.6552 1.8844 1.9990 2.1120 2.2225 2.3320 
4 1.7148 1.7630 1.8078 1.8505 1.8924 1.8170 1.9362 2.0521 2.1664 2.2805 
5 2.1247 2.1751 2.2220 2.2671 2.3233 1.7881 1.9080 2.0256 2.1417 2.2465 
6 2.5631 2.6165 2.6640 2.7121 2.7762 1.7888 1.9091 2.0258 2.1430 2.2429 
7 3.0257 3.0808 3.1294 3.1801 3.2890 1.8148 1.9342 2.0499 2.1676 2.2628 
8 3.5133 3.5688 3.6197 3.6717 3.6827 1.8628 1.9804 2.0964 2.2131 2.3042 
9 4.0305 4.0870 4.1406 4.1920 4.2740 1.9310 2.0479 2.1643 2.2790 2.3667 
10 4.5917 4.6487 4.7045 4.7572 4.8379 2.0226 2.1388 2.2551 2.3698 2.4540 
11 5.2259 5.2830 5.3401 5.3939 5.4766 2.1459 2.2614 2.3775 2.4921 2.5733 
12 5.9864 6.0440 6.1007 6.1558 6.1873 2.3156 2.4310 2.5463 2.6611 2.7403 

E(Q) – Expected queue length;  TAC – Total average cost 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 4. Threshold value (Vs) expected queue length and total average cost  



40 
Haridass and Arumuganathan: Optimum Cost Analysis of  a Bulk Queueing System with Multiple Vacations & Restricted Admissibility of  Arriving Batches 
IJOR Vol. 9, No. 1, 27−43 (2012)  

for different probabilities (  ) of allowing customers during vacation 
(For  =1.0,  =2.5, b=12,  =2,  =0.7) 

a 
E(Q) TAC 

0.2    0.4    0.6    0.8    1.0    0.2    0.4    0.6    0.8    1.0    
1 0.4283 0.7564 1.0221 1.2469 1.4437 1.5730 2.1389 2.4414 2.6359 2.7797 
2 0.6806 0.9345 1.1565 1.3557 1.5381 1.3940 1.9425 2.2680 2.4842 2.6361 
3 1.0625 1.2676 1.4553 1.6299 1.7948 1.3267 1.8363 2.1671 2.3995 2.5651 
4 1.4964 1.6676 1.8292 1.9840 2.1335 1.3219 1.7858 2.1095 2.3519 2.5291 
5 1.9566 2.1032 2.2454 2.3847 2.5220 1.3519 1.7737 2.0844 2.3308 2.5150 
6 2.4327 2.5616 2.6899 2.8180 2.9464 1.4054 1.7908 2.0857 2.3332 2.5205 
7 2.9195 3.0372 3.1566 3.2778 3.4009 1.4751 1.8298 2.1099 2.3559 2.5436 
8 3.4198 3.5318 3.6471 3.7656 3.8870 1.5591 1.8885 2.1554 2.3990 2.5868 
9 3.9380 4.0505 4.1668 4.2869 4.4106 1.6556 1.9654 2.2217 2.4633 2.6512 
10 4.4907 4.6089 4.7311 4.8571 4.9866 1.7685 2.0654 2.3125 2.5532 2.7417 
11 5.1053 5.2344 5.3670 5.5025 5.6407 1.9036 2.1900 2.4347 2.6757 2.8657 
12 5.8415 5.9841 6.1282 6.2738 6.4209 2.0766 2.3597 2.6037 2.8462 3.0380 

E(Q) – Expected queue length;  TAC – Total average cost 
 
 

 
 

Figure 1. (a) Threshold Value (Vs) Total Average Cost for α=0.7, β =0.2 

(For λ=1.0, µ=2.5, b=12, γ =2) 
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Figure 1. (b) Threshold value (Vs) total average cost for  =0.7,  =0.2 
(For =1.0,  =2.5, b=12,  =2) 

 

 
Figure 2. Threshold value (Vs) total average cost for different  
probabilities ( ) of allowing customers during busy period  

 (For  =1.0,  =2.5, b=12,  =2,  =0.6) 
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Figure 3. Threshold value (Vs) total average cost for different  

probabilities ( ) of allowing customers during vacation 
(For  =1.0,  =2.5, b=12,  =2,  =0.7) 

 
8. CONCLUSION 
 

In this paper, “a batch arrival general bulk service queueing system under a restricted admissibility policy of arriving 
batches with multiple vacations” is analyzed. The probability generating function for the queue size at an arbitrary time 
epoch is derived.  Various performance measures are also obtained.  The results so obtained in this paper can be used for 
managerial decision to optimize the overall cost and search for the best operating policy in a waiting line system.  The 
theoretical development of the model is justified with numerical results which are consistent with the fact that the total 
average cost decreases when the restricted admissibility policy is adopted during the vacation and non-vacation periods 
(busy).  

In the direction of future research, the model can be extended with service interruptions, close down concepts.  An 
attempt may be made to derive the busy period distributions and idle period distributions.  A discrete time model can also 
be developed. 
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