

1813-713X Copyright © 2012 ORSTW

International Journal of Operations Research Vol. 9, No. 1, 12−26 (2012)

Continuous Min-Max Programs with Semi-Infinite Constraints

Jen-Yen Lin1,∗ , Soon-Yi Wu2 and Ruey-Lin Sheu2
1Department of Applied Mathematics, NCYU, Chiayi, Taiwan

2Department of Mathematics, NCKU, Tainan, Taiwan

Received November 2011; Revised December 2011; Accepted January 2012

AbstractIn this paper, we propose an algorithm for solving a kind of nonlinear programming where the objective is the
maximal function of a family of continuous functions and the feasible domain is explicitly made of infinitely many constraints.
Our algorithm combines the entropic regularization and the cutting plane method (the Remez-type) to deal with the
non-differentiability of the maximal function and the infinitely many constraints respectively. A finite relaxed version, which
terminates within a finite number of iterations to give an approximate solution, is proposed to handle the computational issues,
including the blow-up problem in the entropic regularization and the global optimization subproblems in the cutting plane
method. To justify the efficiency of the inexact algorithm, we also analyze the theoretical error-bound and conduct numerical
experiments.

Keywords Min-max Programs, Semi-infinite Constraints, Entropic Regularization, Cutting Plane Methods.

1. INTRODUCTION

In this paper, we consider the following problem:

min ()
()

. . (,) 0,
x X

F x
P

s t g s x s S


  
 (1)

where () max (,)
t T

F x f t x


 ; X is a compact subset of n
 ; T and S are compact subsets of p

 ; :f T X   ;

:g S X   are continuous. When the cardinality of both T and S is finite, the program ()P is called the finite
min-max programming. When the cardinality of T is uncountable, it is called the continuous min-max programming. If the
cardinality of S is uncountable, then ()P is the semi-infinite programming. For convenience, we also let *x be an optimal

solution of the master problem (1) with * being the optimal value.
The finite min-max programming has been studied extensively in the literature, see for examples, Dem’yanov (1974), Dem’

yanov & Vasilev (1985), Allen et al. (1987), Polak et al. (1982, 1991, 1922), Polak (1987,1994), Sheu & Wu (1999). Since the
objective function

1
max (,)

ii n
f t x

 
, (in this case,

1 2
{ , , , }

n
T t t t ) is nonsmooth, the gradient-based algorithms can not be

applied directly. Instead, the subgradients or the  subgradients are often used as the search direction in the line search. For
the computation of subgradients and  subgradients, please see Dem’yanov (1974), Dem’yanov & Vasilev (1985), Bertsekas
(2002), Bertsekas et al. (2003). On the other hand, the non-differentiable points can be regularized (approximated) by smooth
functions so that the gradient-based methods become applicable. Such a method is called the smoothing method. In particular,
Fang et al. (1997) proposed the following entropic regularization

1

1
() ln exp{ (,)}

n

p i
i

F x pf t x
p 

  (2)

The approximate functions (), 0
p

F x p  are smooth and due to the following uniform estimation

ln()
0 () ()

p

m
F x F x

p
   (3)

∗ Corresponding author’s email: jylin@mail.ncyu.edu.tw

International Journal of
Operations Research

Lin, Wu and Sheu: Continuous Min-Max Programs with Semi-Infinite Constraints
IJOR Vol. 9, No. 1, 12−26 (2012)

13

()
p

F x converge to
1
max (,)

ii n
f t x

 
 uniformly as p approaches to  . Therefore, minimizing ()

p
F x for each p creates a

sequence of iterated points
p

x in which there is a subsequence converging to an optimal solution of the original finite

min-max problem.
A generalization of the finite min-max programming is to consider an infinite compact set T in the objective function.

There are two classical approaches for solving it: the integral-type and the Remez-type. Polak et al. (1992) solved the
subproblem

1

() 0

1
min (,)

(,)k
kx C

k

p x dt
f t x





 (4)

where
k

 is the objective value at the thk iteration and () { | max (,) }
k kt T

C x X f t x 


   . This is a kind of barrier

function method. However, to ensure the barrier effect that (,)
k

p x should approach to infinity for points near the boundary

of ()
k

C  , a uniform Lipschitz condition on the functions (,)f t x is required. Another integral-type method is to generalize
the idea of the entropic regularization (2) via integration:

1ˆ () ln exp{ (,)} .
p T

F x pf t x dt
p

  (5)

However, the uniform estimation (3) for the finite min-max programming can not be similarly extended. In fact, only the right
inequality in (3) remains valid:

ln()ˆ () () ,
p

m
F x F x

p
  (6)

so that the convergence of ˆ ()
p

F x to ()F x can be established merely under restrictive conditions. See Wu & Fang (1996).

Then, the theoretical assumptions together with the numerical difficulty in treating the integral-type objective function (4) or
(5) become a serious limitation on the capacity of applying the integral-type method for the continuous min-max
programming.

In contrast to the integral-type method which deals with the entire set of functions { (,)}
t T

f t x 
 at each iteration, the

Remez-type method, also known as the method of outer approximations (Polak, 1994) or the exchange method in
semi-infinite programming (Hettich & Kortanek, 1993), (Reemtsen & Gorner, 1998) is a cutting plane type of approach which
considers only a finite subset

m
T of T at a time and let

m
T grow gradually to approximate T asymptotically. This reduces

the continuous min-max problem into a sequence of finite ones, so that the entropy regularization (2) rather than (5) is feasible.
See Sheu & Lin (2004) for the detail. With the help of the uniform estimation(3), the convergence of the Remez-type method
can be proved with less restriction than that of the integral-type, but the numerical bottleneck appears (i) in the update for

m
T

which requires to solve a global optimization subproblem; and (ii) the possible blow-up caused by the exponential function in
(2) when T grows. We shall take care of these issues later in the paper by proposing a relaxed version.

The program ()P is a semi-infinite programming(SIP) when the cardinality of S is uncountable. SIP aries in many areas:
Mathematics, Engineering, Management Science, etc. Practical examples of SIP can be found in Chapter 2 of Hettich &
Kortanek (1993), where the robot trajectory planning, Chebyshev approximation, minimal cost control of air pollution,
statistical regression experimental design, and many others were discussed. Polak (1987) also had some SIP examples from the
optimal control and the engineering design.

In these applications, we focus on the rational Chebyshev approximation which consider the problem of approximating a

given real valued function ()a t , on an interval
1 2

[,]t t , by a rational function
(,)

(,)

p t x

q t x
 where the integers

1
m and

2
m are given,

1 1

1 1

1

1 1
(,) m m

m m
p t x x t x t x

    and 2 2

1 2 1 2 1

1

2 1 2
(,) m m

m m m m m
q t x x t x t x

        . We wish to find an

optimal solution of

1 2[,]

(,)
inf ()

,)
max

(x X t t t

p t x
a t

q t x 
 (7)

where

1 2

1
2

2

1 1 21 1
| | 1, (,) 0, [m ,] .axm m

m jj m
X x x q t x t t t 

   

            


The normalization condition
1

2
11 1

|max | 1
m jj m

x    
 is necessary, because the expression

(,)

(,)

p t x

q t x
 is homogeneous in the

required coefficients
i

x ,
1 2

1,2, , 2i m m   . The semi-infinite constraints
1 2

(,) 0, [,]q t x t t t   is used to avoid

Lin, Wu and Sheu: Continuous Min-Max Programs with Semi-Infinite Constraints
IJOR Vol. 9, No. 1, 12−26 (2012)

14

that the rational function
(,)

(,)

p t x

q t x
 has singularity. The program (7) is a kind of continuous min-max programs with

semi-infinite constraints.
Numerical methods for solving SIP has been summarized in Reemtsen & Gorner (1998). These algorithms can be

categorized into three types: Discretization, Exchange method/Remez type method, Methods based on the local reduction.
The essence of the three types of methods is to approximate the feasible set
(,) 0,g s x s S  

of (P) by imposing only finitely many constraints

1 2
(,) 0, { , , , }

i i l l
g s x s S s s s     .
The discretization method seems to be the simplest in the idea, but the number l used to be very large. Methods based on the
local reduction requires only local searches. Its convergence is fast, but the requirement to find all local maxima s that
(,) max (,)

s S
g s x g s x


 is too expensive, where x is the previous iterate point. We are most interested in the exchange

method/Remez-type approach as it can be used to incorporate with the Remez-type method that we have discussed for the
min-max objective function above.

One way to solve the main program (1) is to move the function max (,)
t T

f t x


 to the constraints as the following form

(,)
min

. . (,) 0,

(,) ,

,

x

s t g s x s S

f t x t T

x X







  
  

 

 (8)

and solve it by SIP methods. But sometimes it is not a good transformation. For example, if we use Remez-type method to
solve the program(8), then, in the subproblem of each iteration, we need to consider finite subset

m
T of T and the

constraints
(,) , .

m
f t x t T  

When the cardinal number of
m

T is increased, the number of constraints of next subproblem is increased. Hence the next
subproblem is harder to be solved. On the contrary, if we use entropy regularization
1

ln exp{ (,)}
mt T

pf t x
p 

 (9)

to approximate the function max (,)
mt T

f t x


, then the cardinal number of
m

T is increased by 1 only contribute to add one more

term to the function(9). This is another benefit of entropy regularization.
This paper is aimed to solve ()P by applying the Remez-type method to both the continuous min-max objective function

and also the infinitely many constraints. In other words, at each iteration we only face a finite min-max objective function
(specified by the set

m
T) with a finite number of constraints (specified by the set

l
S) and solve it via the entropic

regularization (by parameters p). Normally in such an approach, the next update for
l

S has to wait until the completion of all

necessary updates for
m

T and p , but our algorithm allows to update
m

T ,
l

S , and p in any order, depending upon the
progress of the algorithm. We shall show in Section 2 that the idea not only increases the best efficiency, but also retains the
convergence. In Section 3, we propose a finite inexact version which replaces the most violated index by any violated one to update
the

m
T and the

l
S , and thus avoids the necessity to solve the global optimization subproblems. As a result, this relaxation has

a nice finite convergence property with a controllable error. Finally in Section 4, we implement the algorithm and give some
numerical examples to show the practice of our algorithm.

2. AN INEXACT ALGORITHM AND ITS CONVERGENCE PROOF

Let
1 2

{ , , , }
m m

T t t t  be a finite subset of T and
1 2

{ , , , }
l l

S s s s  be a finite subset of S . Based on
m

T and
l

S , we
consider the following finite min-max programming problem with a finite number of inequality constraints:

,

max (,)min
()

. . (,) 0,
mt Tx X

m l

l

P
s

f

t g s

x

S

t

s x


  
 (10)

Define the objective function of (10) as

Lin, Wu and Sheu: Continuous Min-Max Programs with Semi-Infinite Constraints
IJOR Vol. 9, No. 1, 12−26 (2012)

15

() max (,)
mt

m

T
F f t xx


 (11)

Suppose (10) is solved with *
,m l

x being an optimal solution and * *
, ,

max (,)
m

m l m lt T
f t x


 being the optimal value. To find the

minimum of ()mF x one must face its non-differentiability and the way we handle it is to approximate ()mF x by the smooth
functions:

1
() ln exp{ (,)}

m

m
p

t T

F x pf t x
p 

  (12)

The uniform estimation (3) under the current notation is expressed as

()
ln()

0 () ,mm
p

F x
m

F x x X
p

     (13)

Then we may consider the following entropic-regularized version:

, ,

()min
()

. . (,) 0,
x X

m
p

l
l

m

p
P

s t g s s S

F x

x


  
 (14)

with the definition of a ()  optimal solution to measure the quality of the entropic approximate solution.

Definition 1.

We call x is a (,)   optimal solution of (1), if
*| max (,) |

t T
f t x  


 

and
max (,) .

s S
g s x 




Proposition 2.

Let ,xm l
p

 be an optimal solution of (14) satisfying ,max (, x) 0m

S

l
ps

g s


 and , ,() ()x xm l m l
p

m
pp

F F , then , * ln
() ()xm l

p

m
F F x

p
  . In

other words, ,xm l
p

 is a
ln()

, 0
m

p

     
optimal solution of (1).

Proof.
Since *x is feasible to (1), it must also be feasible to (14). This implies that

, *() ()x xm lm m
p pp

F F . (15)

Using the uniform estimation (13), we have

* *x
ln()

0 () (x)mm
p

m

p
FF   . (16)

Combining (15) with (16), we get

, * *ln()
x

ln()
()()) x(xm l m

p

m m
F F

p p
F  .

By ,max (, x) 0m

S

l
ps

g s


 , ,xm l
p

 is a feasible solution of (1). Therefore, ,xm l
p

 is a
ln()

, 0
m

p

     
-optimal solution of (1). ■

However, if ,xm l
p

 is not a good approximation in the sense of (, 0) -optimality, it is either not feasible or violates the

condition , ,() ()x xm l m l
p

m
pp

F F . In the former case that ,max (, x) 0m

S

l
ps

g s


 , there is an
1l

s S  such that

,
1

,(,) max)x x(,
l s S

m l m l
p p

g s g s 
 and

1l l
s S  . It is thus reasonable to add the

1l
s 

 to
l

S , which forms
1l

S 
. In the latter case

that , ,() ()x xm l m l
p

m
pp

F F , the following inequality
, , ,() () ()x x xm l m l m l

p p p
m m
p

F F F 

implies that there is a
1m

t T  such that , , ,
1

(,) () ()m l m l m m l
m p p p

f t x F x F x   and
1m m

t T  . We then add
1m

t 
 to

m
T and

obtain
1m

T 
. The updates for

l
S and

m
T constitute the backbone of our algorithm as follows.

Lin, Wu and Sheu: Continuous Min-Max Programs with Semi-Infinite Constraints
IJOR Vol. 9, No. 1, 12−26 (2012)

16

Algorithm 1
Initial Given prescribed numbers 0  , 1 ,

1
0p  and two finite subsets

1 1
{ }T t T  and

1 1
{ }S s S  .

Let 1m  , 1l  and
1

p p .

Step 1. Solve the following subproblem
, ,

()
m l p

P

, ,

()min
()

. . (,) 0,
x X

m
p

l
l

m

p
P

s t g s s S

F x

x


  

to get an optimal solution ,xm l
p

.

Step 2. If , ,() ()m l m m l
p p p

F x F x , ,max (,) 0m l
ps S

g s x


 and
1

p
 , then set m m , l l and p p ; return ,m l

p
x as a

ln()
, 0

m

p

     
-optimal solution and STOP.

Step 3. If , ,() ()m l m m l
p p p

F x F x , find a
1m

t T  such that , ,
1

(,) ()m l m l
m p p

f t x F x  and update
1 1

{ }
m m m

T T t   . Set

1m m  and choose 2(ln)p m .

Step 4. If ,max (,) 0m l
ps S

g s x


 , find a
1l

s S  such that , ,
1

(,) max (,)m l m l
l p ps S

g s x g s x 
 and

1 1
{ }

l l l
S S s   . Set

1l l  .

Step 5. If
1

p
 , then increase p by *p p  .

Step 6. Goto Step 1.

According to Proposition 2, when Algorithm 1 stops, we have obtained a
ln()

, 0
m

p

     
-optimal solution with

1

p
 .

However, it may not always stop within a finite number of iterations and one of the following situations must happen:
1. The index l is eventually fixed at some l , but the condition in Step 3 is never violated thereafter.

2. The index m is eventually fixed at some m and p is fixed at p with
1

p
 , but the condition in Step 4 is

never violated thereafter.
3. Algorithm 1 keeps adding points to either

m
T or

l
S infinitely

In the first case, we use the following theorem to ensure that every cluster point of the sequence generated by Algorithm 1
is an optimal point of the problem (1).

Theorem 3.

Suppose that l is eventually fixed at some l and that the condition in Step 3 is never violated thereafter. Then Algorithm 1 generates an infinite
sequence ,{ }m l

p
x (,)m p   in X of which every cluster point is an optimal point of (1).

Proof.
Under the condition of Theorem 3, the points generated after l by Algorithm 1 are feasible to (1) but the index m is

increased without a bound by Step 3. In this case, p is increased to infinity at a speed at least 2(ln)m . Algorithm 1 then
behaves like the IER Algorithm in Sheu & Lin (2004) which solves the continuous min-max problem over a fixed domain. The
convergence proof then follows from Theorem 2.1 in Sheu & Lin (2004). ■

In the second case, we prove that every cluster point of the sequence generated by Algorithm 1 is a near-optimal point of the
problem (1) with a known error estimation.

Theorem 4.

Suppose that m is eventually fixed at some m and p is fixed at p with 1

p
 , but the condition in Step 4 is never violated thereafter. Then

Algorithm 1 generates an infinite sequence ,
1

{ }m l
p l

x 


 in X of which every cluster point of ,
1

{ }m l
p l

x 


 is a
ln()

, 0
m

p

     
-optimal solution of (1).

Proof.

Lin, Wu and Sheu: Continuous Min-Max Programs with Semi-Infinite Constraints
IJOR Vol. 9, No. 1, 12−26 (2012)

17

Let x be any cluster point of ,{ }m l
p

x . Since the condition in Step 4 is never violated from a certain iteration on, the index

l is increased to infinity. As S is compact, there exist convergent subsequence ,{ }km l

p
x and

1
{ }

kl
s 

 such that ,lim km l

pk
x x




and
1

lim
klk

s s
 where s is a cluster point of

1
{ }

kl
s 

. Since, for all sufficiently large
k
l ,

, ,() ()k km l m lm
p p p

F x F x ,

we have, by Proposition 2, that
, * ln()

() ()km l

p

m
F x F x

p
  . (17)

Taking the limit on both sides of inequality (17) and by the continuity of F , we get

* ln()
() ()

m
F x F x

p
  .

Now we show that x is feasible, or equivalently, we have to show that (,) 0g s x  where argmax (,)
s S

s g s x


 . Since

,

1
argmax (,)k

k

m l

l p
s S

s g s x


 , the following inequality holds:

, ,

1
(,) (,)k k

k

m l m l

p l p
g s x g s x ,

which, when taking
k
l   , leads to

(,) (,)g s x g s x .
We claim that (,) 0g s x  . Suppose, on the contrary, that (,) 0g s x  . There exists some positive integer N such that

(,) 0
Nl

g s x  . Since , km l

p
x converges to x as

k
l   , there is another positive integer N N such that ,(,) 0N

N

m l

l p
g s x  .

However, this is a contradiction as
N Nl l

s S and , Nm l

p
x satisfies that ,(,) 0Nm l

p
g s x  for all

Nl
s S . ■

Finally in the third case, we have the following theorem.

Theorem 5.
Suppose Algorithm 1 generates an infinite sequence , 2{ }(, , (ln()))m l

p
x l m p m     in X , then every cluster point of ,{ }m l

p
x is

a global minimizer of (1).
Proof.

Since m   and 2(log()))p m , we have p   and
ln

0
m

p
 . Let x be any cluster point of ,{ }m l

p
x . Then, by the

compactness of X , T and S , there exist convergent subsequences ,{ }k k

k

m l

p
x ,

1
{ }

km
t 

 and
1

{ }
kl

s 
 which converge to x , t

and s , respectively, as
k
l   ,

k
m   . Also (13) implies that

, ,() ()k k k k k k

k k k

m m l m m l

p p p
F x F x

and
ln(

() ()
)

X,k k

k

m m k
p

k

m
F x F x x

p
    .

Since ,k k

k

m l

p
x is an optimal solution of

, ,
()

k k km l p
P , we have

, ,() ()

(),

ln(
()

ln(
()

)
,

)

k k k k k k

k k k

k

k

k

m m l m m l

p p p
m

p

m k

k

k

k

F x F x

F x x X

m
F x

p
m

F x x X
p



  

 

   

. (18)

Moreover,
, , , ,

1
(,) () () (,).k k k k k k k k k

k k k k k k

m l m l m m l m l

m p p p m p
f t x F x F x f t x    (19)

Lin, Wu and Sheu: Continuous Min-Max Programs with Semi-Infinite Constraints
IJOR Vol. 9, No. 1, 12−26 (2012)

18

By the continuity of (,)f t x on T X , both sides of the inequality (19) tend to (,)f t x , which implies
, ,() () 0k k k k k

k k

m m l m l

p p
F x F x  as k   . As ,()k k

k

m l

p
F x converges to ()F x , we have

,() ()k k k

k

m m l

p
F x F x . (20)

Combining (20) with (18), we obtain
() (),F x F x x X   .

Finally, that x is feasible to (1) follows the same proof of Theorem 4. ■

3. A RELAXED VERSION

The purpose of this section is to enhance the effectiveness of Algorithm 1 by resolving three numerical issues in Algorithm
1. They are

1. a possible blow-up caused by the exponential term in the objective function of
, ,

()
m l p

P ;

2. finding ,
1

argmax (,)m l
m p

t T
t f t x


 , a global optimization subproblem;

3. finding ,
1

argmax (,)m l
l p

s S
s g s x


 , again a global optimization subproblem.

Notice that the core of Algorithm 1 is to minimize ()m
p

F x , which requires to compute the function values of ()m
p

F x . As

()m
p

F x involves an exponential term which is sensitive to the values of p and (,)f t x , when (,)f t x is positive and p is large,

()m
p

F x can be easily numerically unbounded. However, the difficulty can be eased by a proper shift of



, ,

1
ln exp{ [(,min

()
. . (,

)

) 0,

]}

m

mx X
m l

l

t Tp
P

s t g s x s S

p f t x
p







  

 

 (21)

where 1,max (,)
m

m l
m pt T

f t x 


 and let us define

1
() ln{ exp{ [(,)]}}

m

m
p m

t T

F x p f t x
p




 



A simple computation shows that
() ()m m

p p m
F x F x  

 . (22)

so that minimizing ()m
p

F x and minimizing ()m
p

F x make the same optimal solution. However, by the shift of
m

 , the

previous iterate point 1,m l
p

x  becomes a ready-to-use initial point for computing its next iterate point ,m l
p

x since the

computation of 1,()m m l
p p

F x 
 then consists of only the exponentials of negative values. In practice, the sequence ,{ }m l

p
x

normally converges to a limit x in the compact set X as m and p tend to the infinity. In the early stage of the convergence
when m and p are small, the difficulty for computing the exponentials are generally not too serious. When p gets bigger,

since at the same time 1,m l
p

x  is also close to ,m l
p

x , we can expect that the computational concerns for exp{ ((,))}
m

p f t x  

should be relaxed due to
m

 . This observation will be confirmed by our experiments in Section 4.

The other two computational issues involve the global optimization subproblems for finding
1m

t 
 and

1l
s 

. We have seen

from Algorithm 1 that, if either , ,() ()m l m m l
p p p

F x F x or ,max (,) 0m l
ps S

g s x


 , the algorithm can not stop since, respectively,

either the objective value ,()m l
p

F x is not small enough or the point ,m l
p

x is not feasible yet. By Theorem 5, it guarantees the

global convergence of ,{ }m l
p

x in the limit provided the most violated indices (or the deepest cut in the cutting plane slogan)
,

1
argmax (,)m l

m p
t T

t f t x


 and ,
1

argmax (,)m l
l p

s S
s g s x


 are generated to update

m
T and

l
S respectively. This creates two

computational problems. First, the global optimization problems are in general difficult to solve. Secondly, generating
1m

t 

and
1l

s 
 might become an infinite process. Though the convergence to an optimal solution holds eventually in the limit by

Theorem 5, yet in a practical situation only a finite execution time is allowed.
We then propose a natural alternative for finding

1m
t 

 and
1l

s 
. The idea is to find any violated index rather than the most

violated one. Specifically, given two positive values  and  as the tolerances, we suggest to find any
1m

t 
 such that

Lin, Wu and Sheu: Continuous Min-Max Programs with Semi-Infinite Constraints
IJOR Vol. 9, No. 1, 12−26 (2012)

19

, ,
1

(,) ()m l m m l
m p p p

f t x F x    (23)

and to find any
1l

s 
 such that

,
1

(,)m l
l p

g s x   . (24)

If there are no such
1m

t 
 and

1l
s 
 , we should stop the algorithm and report the current iterate point as a near optimal solution

for (1). It is going to be shown that, generating
1m

t 
 and

1l
s 
 must be a finite process regardless the points selected in (23) and

(24). Moreover, the quality of the final approximate solution is controllable. For this purpose, we have the following
propositions and theorems:

Algorithm 2

Initial Given two prescribed numbers 0  , 0  , 0  , 1 ,
1

0p  and two finite subsets
1 1

{ }T t T 
 ,

1 1
{ }S s S 

 . Let 1m  , 1l  ,
1

p p and
1

1
max (,)
t T

f t x





 .

Step 1. Solve







, ,

1
ln exp{ [(,min

()

. . (,

)

) 0,

]}

m

mx X
m l

l

t Tp
P

s t g s x s S

p f t x
p







  

 

to get an optimal solution ,m l
p

x .

Step 2. If , ,()) (m l m m l
p p p m

F x F x    

 , ,max (,)m l
ps S

g s x 


 and
1

p
 , then set m m , l l and p p ;

return ,m l
p

x as a
ln

(,)
m

p
   optimal solution and STOP.

Step 3. Find
1m

t T  such that , ,
1

(,) ()m l m m l
m p p p m

f t x F x     


 . Set
1 1

{ }
m m m

T T t   
 ;

1

,
1

max (,)
m

m l
m pt T

f t x


 




 ;

1m m  , and choose 2(ln)p m .

Step 4. Find
1l

s S  such that ,
1

(,)m l
l p

g s x   . Set
1 1

{ }
l l l

S S s   

 and 1l l  .

Step 5. If
1

p
 , increase p by *p p  .

Step 6. Go to Step 1.

In the remaining of this section, we prove that Algorithm 2 always stops in a finite number of steps. First, we discuss that

Algorithm 2 will run Step 3 for at most a finite number of times.

Proposition 6.
Algorithm 2 can only run Step 3 for a finite number of steps.

Proof.
Suppose, on the contrary, that Algorithm 2 ran Step 3 infinitely often. Then an infinite sequence

, 2{ }(, (ln))m l
p

x m p m   would have been generated. Let ,{ }k k

k

m l

p
x and

1
{ }

km
t 
 be convergent subsequences such that

,k k

k

m l

p
x x and

1km
t t  as k   and , ,

1
(,) ()k k k k k

k k k k k

m l m m l

m p p p m
f t x F x     


 . Moreover,
1

{ ()}km

k
F x 


 forms an

increasing sequence of functions bounded above by ()F x so that

() lim (),km

k
F x F x x X


  

is well-defined. Notice that the function ()F x depends on
1

{ }
km

t 
 . A different choice of

1
{ }

km
t 
 in general gives a distinct

()F x . Nevertheless, by the Dini theorem (Dieudonne, 1969),
1

{ ()}km

k
F x 


 always converges uniformly to its corresponding

continuous function ()F x on X . By(22),

Lin, Wu and Sheu: Continuous Min-Max Programs with Semi-Infinite Constraints
IJOR Vol. 9, No. 1, 12−26 (2012)

20

, ,

,

() ()

()

()

ln
()

ln
() .

k k k k k k

k k k

k k k

k k k

k

k k

k

m m l m m l

p p m
m m l

p p m
m

p m

m k

k

k

k

F x F x

F x

F x

m
F x

p
m

F x
p







 

 

 

 

 













 (25)

Moreover, by the uniform convergence of { ()}kmF x to ()F x and by the continuity of ()F x , the following triangular
inequality

, , , ,| () () | | () () | | () () |k k k k k k k k k

k k k k

m m l m l m l m lm
p p p p

F x F x F x F x F x F x    

shows that
,() (), as ,k k k

k

m m l

p
F x F x m p  

Passing the limit to both sides of (25), we obtain () ()F x F x , indicating that x minimizes ()F x over X . Although x is

in general not the global minimize of ()F x , the fact that (,) ()f t x F x as shown below, and also the way we choose
1km

t 


in Step 3 make Algorithm 2 a finite convergence procedure. To see this specifically, we first notice that

1

, ,

1
,

,

1

(,) ()

()

(,) .

k k k k k

k k k k k

k k k

k

k k

k k

m l m m l

m p p p m
m m l

p
m l

m p

f t x F x

F x

f t x

 










  

 

 








 (26)

In the limit, since (,)f t x is continuous, we have both ,

1
(,)k k

k k

m l

m p
f t x
 and

1

,

1
(,)k k

k k

m l

m p
f t x

 
 tend to (,)f t x such that (26)

becomes
(,) () (,)f t x F x f t x    

which is a contradiction. Therefore, Algorithm 2 will only run Step 3 for a finite number of steps. ■

In a similar fashion, we have

Proposition 7.
Algorithm 2 can only run Step 4 for a finite number of steps.

Proof.
Suppose on the contrary that Algorithm 2 ran Step 4 for infinitely many times and generated an infinite sequence

,{ }()m l
p

x l   . Let ,{ }k k

k

m l

p
x and

1
{ }

kl
s 
 be convergent subsequences such that ,k k

k

m l

p
x x and

1kl
s s  as

k
l  

and ,

1
(,)k k

k k

m l

l p
g s x   . Moreover,

1

, ,

1 1
(,) 0 (,)k k k k

k k k k

m l m l

l p l p
g s x g s x

     (27)

since
1

1
k k
l l   so that

1 1k kl l
s S

   

 . Taking the limit at both sides of (27) and by the continuity of (,)g s x on S X , we

again obtain the following contradiction:
(,) 0 (,)g s x g s x   ,

which proves the theorem. ■

Combining Proposition 6 and Proposition 7, we have the following theorem.

Theorem 8.

Algorithm 2 must stop in Step 2 after a finite number of executions and obtain ,m l
p

x as a ln
,

m

p
 

      
optimal solution of (1).

Proof.

Suppose, after a sufficiently large number of executions,
1

p
 and Algorithm 2 can neither generate

1m
t 
 nor

1l
s 
 with

the final index of p , m and l being set to p , m and l , respectively. We must have, at this moment,
, ,(,) () ,m l m m l

p p p m
f t x F x t T     



Lin, Wu and Sheu: Continuous Min-Max Programs with Semi-Infinite Constraints
IJOR Vol. 9, No. 1, 12−26 (2012)

21

and
,(,) ,m l

p
g s x s S  

which implies that , ,() ()m l m m l
p p p m

F x F x    

 and ,max (,)m l
ps S

g s x 


 so that the stopping criterion at Step 2 of

Algorithm 2 is certainly satisfied no later than p p , m m , and l l . Without loss of generality, we may assume that
, ,p m l be the earliest such indices. Then, Algorithm 2 stops at Step 2 with

* ,

,

,

*

*

*

() ()

()

()

()

ln()
()

ln()
() .

m l
p

m m l
p p m
m m l
p p
m
p

m

F x F x

F x

F x

F x

m
F x

p
m

F x
p

 











  

 

 

  

  





In other words,

, * ln
0 () ()m l

p

m
F x F x

p
    ,

which shows that ,m l
p

x is a
ln

,
m

p
 

      
optimal solution. ■

4. NUMERICAL EXAMPLES

In this section, we demonstrate some numerical experiments for Algorithm 2. The results were obtained on a PC equipped
with Pentium(R) D CPU 3.0GHz/3.0GHz, 2 Gigabyte RAM and MATLAB 2007B. At each iteration, Algorithm 2 needs to

1. solve the subproblem 
, ,

()
m l p

P ;

2. find
1m

t T  such that , ,
1

(,) ()m l m m l
m p p p m

f t x F x     


 ; and

3. find
1l

s S  such that ,
1

(,)m l
l p

g s x   .

For the first item, we choose the MATLAB subroutine (fmincon in Optimization Toolbox) to solve 
, ,

()
m l p

P . For the second and

third items, they are equivalent to the following feasibility problem: given a fixed x X and 0  ,
Determine and find whether there is a y Y such that (,)h y x   . (28)

If Y T , (,) (,) ()m
p m

h y x f y x F x   

 , ,m l
p

x x and   , then the solutions of (28) satisfy the condition in Step

3 of Algorithm 2. Similarly, when Y S , (,) (,)h y x g y x , ,m l
p

x x and   , the solutions of (28) meet the

requirement in Step 4 of Algorithm 2. However, if there is no such y , we must be able to determine that problem (28) is
infeasible.

Theoretically, a feasibility decision problem is as hard as an optimization problem. In practice, however, when the answer to
the feasibility decision problem is ``yes'', finding only a feasible solution in general saves a lot of work compared with finding
an optimal one. We shall implement a discretization-based Algorithm 3 below to solve (28).

Let us first define some notations. Suppose that Y [,]a b is an interval on  and for a given positive integer N , we

define the partition
N

Y of Y by

| , 0,1,y ,y
N i i

b a
a i i N

N
Y

          


and also the distance from
N

Y to Y by

‖‖
 Yy Y

(,) max miY Y yn
i N

N iy
dist y

 
  .

The idea is to select a feasible point of (28) repeatedly from a sequence of finer and finer partitions Y
N

 until either a feasible

solution is detected or the distance of
N

Y to Y becomes small enough.

Lin, Wu and Sheu: Continuous Min-Max Programs with Semi-Infinite Constraints
IJOR Vol. 9, No. 1, 12−26 (2012)

22

Algorithm 3
Initial Given x X and three prescribed numbers 0  ,

0
0 and

0
  . Select (0,1)r  and a finite subset

N
Y

of Y such that (,)
N

dist Y Y   .

Step 1. If

(,) max (,)y
i N

iYy
h x h y x 


 

  , report y as a feasible solution to (28) and stop.

Step 2. If
0

  , set r  and reproduce
N

Y such that (,)
N

dist Y Y   . Go to step 1.

Step 3. If max (,)
i N

iy Y
h y x 


 and

0
  , stop and report that no feasible solution to problem (28) was found.

In the following examples, we incorporate Algorithm 2 with Algorithm 3 for finding approximate solutions to (1). Without
sacrificing too much solution quality, the combined algorithm usually obtained a satisfactory solution in less execution time.
Moreover, we also compare the numerical results with another approach which treats (1) as a pure semi-infinite programming:

(,)
min

 . . (,) 0,

(,) ,

x

m

X

l
s t g s x s

f t x t

S

T






 

  
 



 (29)

and solves the problem (28) by the following exchange method:

Algorithm 4

Initial Given two prescribed numbers 0  , 0  , 0  , 1 ,
1

0p  and two finite subsets
1

T T ,
1

S S .

Let 1m  , 1l  and
1

p p .
Step 1. Solve the finite constrained subproblem

(,)
min

 . . (,) 0,

(,) ,

x

m

X

l
s t g s x s

f t x t

S

T






 

  
 



and get an optimal solution *
, ,

(,)
m l m l

x .

Step 2. If, for all t T and s S , *
,m l

x satisfy *
, ,

(,)
m l m l

f t x    , *
,

(,)
m l

g s x  , then return *
,m l

x as a

(,)  -optimal solution and STOP.

Step 3. If there exists
1m

t T  such that *
1 , ,

(,)
m m l m l

f t x     , let
1 1

{ }
m m m

T T t    and 1m m  .

Step 4. If there exists
1l

s S  such that *
1 ,

(,)
l m l

g s x   , let
1 1

{ }
l l l

S S s    . Set 1l l  .

Step 5. Go to Step 1.

More details about the relation between (1) and (29) can be found in Polak (1994).

Problem 9.
Define

2

1

1

2
1

[3, 3] , [0,20], [0,200]

(,) (sin)

1
(,)

1

n

n

i
i

n
i

i
i

X T S

f t x t x t

g s x x s
s







   

 

 






where the dimension n is a given postive integer.

Notice that, the objective function

[0,20]
max (,)
t

f t x


 is convex on n
 . When s is fixed, (,) 0g s x  is a linear constraint. In

this example, we choose 5n  and 6n  as the problem dimension. Table 1 shows the two initial solutions for the two
problems with 5n  and 6n  , respectively. They both are infeasible.

To run the combined algorithm of Algorithm 2 and Algorithm 3, we set initially that
0

0.5p  , 1  , 1  , 0.01  ,

2.5 ,
1

{0,5,10,15,20}T  and
1

{0,50,100,150,200}S  . The solution obtained, according to the parameters, is a

(1, 0.01) -optimal solution. Together with the run time, the results are documented in Table 2 for both 5n  and 6n  . To
know how good the approximate solutions are, we ran Algorithm 4 as a benchmark. In the first two rows of Table 3, we have
very tiny tolerances 510 , 0   , so that the results with which can be thought to be a true optimal solution. As we can see,

Lin, Wu and Sheu: Continuous Min-Max Programs with Semi-Infinite Constraints
IJOR Vol. 9, No. 1, 12−26 (2012)

23

the solution quality for the combined algorithm is acceptable, but the run time is just 85% and 51% of that used by
Algorithm 4 for 5n  and 6n  respectively. We expect the trend will continue to grow should the dimension of the
problem become much larger. Another interesting result is listed at row 3 and row 4 of Table 3 where the parameters  and
 were set the same for the combined algorithm and Algorithm 4. In this case, the two algorithms differ only by the entropic
regularization. The results show that the combined algorithm with the entropic regularization is more economical in both cases.
Finally, it is interesting to notice that, when the algorithm stops, there provides by Theorem 8 the theoretical error bound
ln()m

p
 , which is 1.2293 in this example. However, the actual errors are 0.0357 for 5n  and 0.2456 for 6n  , much

smaller than the estimations.

Table 1. Starting points in Example 9
n

0
x

0[0,200]
max (,)

s
g s x



0[0,200]
max (,)

t
f t x



5 (-0.1,-0.1,-0.1,-0.1,-0.1) 81.60 *10 101.7207
6 (-0.1,-0.1,-0.1,-0.1,-0.1,-0.1) 103.21 *10 122.0648

Table 2. The results of Algorithm 2 on Example 9 with

1
0.5p  , 1  , 1  , 0.01  , 2.5 ,

1
{0,5,10,15,20}T  and

1
{0,50,100,150,200}S 

n k
ln()m

p
 0[0,200]

max (,)
s

g s x


0[0,200]

max (,)
t

f t x


 cpu(s)

5 21 0.2293 0.0048 125.3946 2.6250
6 24 0.2293 0.0087 141.3999 3.7344

Table 3. The results of Algorithm 4 on Example 9 with

1
{0,5,10,15,20}T  and

1
{0,50,100,150,200}S 

n parameters
0[0,200]

max (,)
s

g s x


0[0,200]

max (,)
t

f t x


 cpu(s)

5 510 , 0   172.8108 *10 125.4303 3.0625

6 510 , 0   161.1102 *10 141.6455 7.3281

5 1, 0.01   0.0048 125.3946 2.7344
6 1, 0.01   0.0087 141.3999 4.1563

Problem 10.

The rational Chebyshev approximation is to approximate a given continuous function ()h t on an interval T by a rational function
(,)

(,)

p t x

q t x

which satisfies
(,) (,)

max () minmax ()
(,) (,)t T x X t T

p t x p t x
h t h t

q t x q t x  
   (30)

where x X and

1 2

1
2

2

1 1 21 1
max | | 1, (,) 0, [,]m m

m jj m
X x x q t x t t t 

   

            
 .

Let 2() exp()h t t  , [2,2]T   ,
1

3m  and
2

3m  . Suppose the solution

(0.018420, 0.0575825, 0.191241,1.070369, 0.148322,2.239045, 0.275264,1)x  
is given, then it produces a rational function

3 2

3 2

(,) 0.018420 0.0575825 0.191241 1.070369

(,) 0.148322 2.239045 0.275264 1

p t x t t t

q t x t t t

   


  
 (31)

and its corresponding objective value  is
(,)

max () 0.112591
(,)t T

p t x
h t

q t x
    . (32)

With the compact assumption of X and T , by the properties of generalized fractional programs in Crouzeix et al. (1985), *
is the optimal value of (30) if and only if *() 0G   where

Lin, Wu and Sheu: Continuous Min-Max Programs with Semi-Infinite Constraints
IJOR Vol. 9, No. 1, 12−26 (2012)

24

 () max () (,) (m ,) (,) .in
t Tx X

G h t q t x p t x q t x 


 

Hence we use Algorithm 2 to compute ()G  and obtain , ,log()
() () , ()m m l m m l

p p p p

m
G F x F x

p


 
   
 
  . Since Algorithm 2 report

, 3() 0.184756 10m m l
p p

F x    and 7log()
9.520535 10

m

p
  , the value ()G  satisfies

3 7 3() [0.184756 10 9.520535 10 , 0.184756 10].G          
The value ()G  point out that x is very close to the optimal solution of (30), hence the function (31) is a good approximate

function to
2te on T .

In Figure 1, we draw three functions:
2te , th7 order Taylor polynomial

7
()P t and the function (31). Although

7
()P t is

very close to the function
2te on [1,1] , the distance between

7
P and

2te increases quickly. When 2t  , the value
2

7
| () | 48tP t e   which is larger than the objective value (32). Similar results also occur on the th15 order Taylor

polynomial
15
()P t . When the Taylor polynomial is chosen, the Taylor polynomial only can approximate the function

2te in
an interval well. If t is not in this interval, then the error increases quickly. When we observe the function (31), the function
(31) not only approximates the function

2te on the requested interval [2,2] well, but also describes the behavior of
2te

outside the interval [2,2] .

Figure 1. The graph of

2te , th7 order Taylor polynomial, th15 order Taylor polynomial and the function (31)

Problem 11.

In this example, we consider the following problem

[0,2]

2

1

1 1
min max ()

2 1
1 1

. . () 0, [0,2]
2 (1)

1, 0

t t t

x t

t t t

n

i i
i

x LD t L x b x
t

s t x U D s Ux e x s
s

x x









 


   


 

where the given coefficients 20n  , () (())
ij

D t D t , () (())
ij

D s D s , ()
ij

L L and ()
ij

U U are defined by

Lin, Wu and Sheu: Continuous Min-Max Programs with Semi-Infinite Constraints
IJOR Vol. 9, No. 1, 12−26 (2012)

25

() ~ (0, 0.01), {1,2, , },

() ~ Uniform Distribution(0, 4), {1,2, , },

~ Uniform Distribution(0, 0.01), {1,2, , }, ,

0, {1,2, , }, ,

1, {1,2, , }

0, {1,2, , }, ,

~ Uniform Dist

ii

ii

ij

ij

ii

ij

ij

D t U i n

D t i n

L i n j i

L i n j i

L i n

U i n j i

U



 

  
 
  













1,1

1,1

ribution(0,1), {1,2, , }, ,

1, {1,2, , },

~ Uniform Distribution(0, 0.1), {1,2, , },

~ Uniform Distribution(60, 0), {1,2, , },

() sin ,

() cos .

ii

i

i

i n j i

U i n

b i n

e i n

D t t t

D s s s

 
 


 

 
 









Table 4. The results of Algorithm 2 on Example 11 with

1
{ / 2}T  and

1
{ / 2}S 

 Running Time Optimal Value Feasibility
MATLAB subroutine: fseminf 38.6102 1.2628 43.9902 10
Algorithm 2 4.4304 1.2628 98.3518 10

First, we transfer it into a convex semi-infinite programs by (29) and solve it by the MATLAB subroutine: fseminf. Second, we

directly solve Example 11 by Algorithm 2.
Both of these two methods report feasible solutions which have the same objective value, but the running time of Algorithm

2 is less than ones of fseminf by Table 4.

5. CONCLUSION

In this paper, we proposed an inexact algorithm for solving the continuous min-max programming with semi-infinite
constraints. The algorithm is based on a two-layer exchange method, reducing everything to just solving a finite min-max
programming with a finite number of constraints. However, it is known that the traditional exchange method is very
cumbersome by requiring to solve global optimization subproblems, which, in practical implementation, is often relaxed by
finding inexact approximations

1m
t 
 and

1l
s 
 . The best contribution of the paper is to provide a theoretical background for

such a relaxation that it is indeed a finite convergence algorithm with analyzable error bounds. The primitive numerical results
showed that it is very efficient, but we also believe that, based on its inexact nature, the true application of the algorithm lies in
some large scale problems.

REFERENCES

1. Allen, E., Helgason, R., Kennington, J. and Shetty, B. (1987). A generalization of Polyak’s convergence result for
subgradient optimization. Mathematical Programming, 37(3): 309-317.

2. Bertsekas, D.P. (2002). Convexity, Duality and Lagrange Multipliers, to be published, available from
http://www.dim.uchile.cl/~ceimat/sea/apuntes/.

3. Bertsekas, D.P., Nedi’c, A. and Ozdaglar, A.E. (2003). Convex analysis and optimization, Athena Scientific, Belmont, MA.
4. Chen, C.-H. and Mangasarian, O.L. (1995). Smoothing methods for convex inequalities and linear complementarity

problems. Mathematical Programming, 71(1): 51-69.
5. Crouzeix, J.P., Ferland, J.A. and Schaible, S. (1985). An algorithm for generalized fractional programs. Journal of

Optimization Theory and Applications, 47(1): 35-49.
6. Dem’yanov, V.F. and Malozemov, V.N. (1974). Introduction to minimax. John Wiley & Sons, New York.
7. Dem’yanov, V.F. and Vasil’ev, L.V. (1985). Nondifferentiable optimization. Optimization Software, Inc..
8. Dieudonne, J. (1969). Foundations of modern analysis 10-1, Academic Press, New York.
9. Fang, S.-C., Rajasekera, J.R. and Tsao, H.S.J. (1997). Entropy optimization and mathematical programming, Kluwer Academic

Publishers, Boston, MA.
10. Fang, S.-C. and Wu, S.-Y. (1996). Solving min-max problems and linear semi-infinite programs. Computers and Mathematics

with Applications, 32(6): 87-93.
11. Hettich, R. and Kortanek, K.O. (1993). Semi-infinite programming: theory, methods, and applications. SIAM Review, 35:

380-429.
12. Polak, E. (1987). On the mathematical foundations of nondifferentiable optimization in engineering design. SIAM Review,

29(1): 21-89.

Lin, Wu and Sheu: Continuous Min-Max Programs with Semi-Infinite Constraints
IJOR Vol. 9, No. 1, 12−26 (2012)

26

13. Polak, E. (1997). Optimization: algorithms and consistent approximations, Springer-Verlag, New York.
14. Polak, E., Higgins, J.E. and Mayne, D.Q. (1992). A barrier function method for minimax problems. Mathematical

Programming, 54(2): 155-176.
15. Polak, E., Mayne, D.Q. and Higgins, J.E. (1991). Superlinearly convergent algorithm for min-max problems. Journal of

Optimization Theory and Applications, 69(3): 407-439.
16. Polak, E., Qi, L. and Sun, D. (2001). Second-order algorithms for generalized finite and semi-infinite min-max problems.

SIAM Journal on Optimization, 11(4): 937-961.
17. Polak, E. and Royset, J.O. (2005). On the use of augmented Lagrangians in the solution of generalized semi-infinite

min-max problems. Computational Optimization and Applications, 31(2): 173-192.
18. Polak, E. and Tits, A.L. (1982). A recursive quadratic programming algorithm for semi-infinite optimization problems.

Applied Mathematics and Optimization, 8(4): 325-349.
19. Qi, L. (1993). Convergence analysis of some algorithms for solving nonsmooth equations. Mathematics of Operations Research,

18: 227-244.
20. Reemtsen, R. and Goerner, S. (1998). Numerical methods for semi-infinite programming: A survey. In Reemtsen R. and

R’uckmann, J.-J. editors, Semi-Infinite Programming, Kluwer Academic publishers.
21. Sheu, R.-L. and Wu, S.-Y. (1999). Combined entropic regularization and path-following method for solving finite convex

min-max problems subject to infinitely many linear constraints. Journal of Optimization Theory and Applications, 101(1):
167-190.

22. Sheu, R.-L. and Lin, J.-Y. (2004). Solving continuous min-max problems by an iterative entropic regularization method.
Journal of Optimization Theory and Applications, 121(3): 597-612.

23. Wu, S.-Y., Li, D.-H., Qi, L. and Zhou, G. (2005). An iterative method for solving KKT system of the semi-infinite
programming. Optimization Methods & Software, 20(6): 629-643.

	International Journal of

