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Abstract  We address the two-stage multi-machine assembly scheduling problem to minimize total completion times of  
all jobs. The first stage consists of  m independently working machines where each machine produces its own component. 
The second stage consists of  two independent and identical assembly machines. The processing of  a job at the second stage 
cannot start until its m components, produced by the m machines at the first stage, are complete. This problem has been 
recently addressed in the literature for which an efficient heuristic, called SAK, was developed for the case when m=2. In 
this paper, we address the problem for the case m≥2. We propose a hybrid tabu search (HTS) heuristic and show that the 
overall average error of  SAK is more than twice that of  HTS while the average CPU time of  SAK is five times that of  HTS. 
This clearly indicates that the heuristic HTS is much better than the only existing heuristic available for the problem, i.e., 
SAK. We also propose two more heuristics, called SDE and NSDE, and show that the overall average error of  SDE is 
about half  of  that of  HTS. Furthermore, we show that the overall average error of  NSDE is about one third that of  SDE.  
 
Keywords  Scheduling, assembly flowshop, total completion time, heuristic   
 
1. INTRODUCTION 

The two-stage assembly flowshop problem consists of  two stages where there are m machines at the first stage while 
there is only a single assembly machine at the second stage. There are n jobs to be scheduled and each job has m+1 
operations. For each job, the first m operations are conducted at the first stage by m machines in parallel and a final 
operation in the second stage by the assembly machine. The last operation at the second stage may start only after all m 
operations at the first stage are completed. This problem has many applications in industry, and hence, has received an 
increasing attention of  researchers. Lee et al. (1993) described an application in a fire engine assembly plant while Potts et al. 
(1995) described an application in personal computer manufacturing. Another application of  the problem is in the area of  
queries scheduling on distributed database systems, Allahverdi and Al-Anzi (2006a). In short, many real life problems can be 
modeled as a two-stage assembly flowshop scheduling problem. In particular, manufacturing of  almost all items may be 
modeled as a two-stage assembly scheduling problem. 

The two-stage assembly flowshop scheduling problem has been addressed with respect to different performance 
measures. The problem was addressed with respect to makespan performance measure by Lee et al. (1993), Potts et al. 
(1995), Hariri and Potts (1997), Haouari and Daouas (1999), Sun et al. (2003), and Allahverdi and Al-Anzi (2006b) while it 
was addressed with respect to maximum lateness performance measure by Allahverdi and Al-Anzi (2006a) and Al-Anzi and 
Allahverdi (2007).  

For some scheduling environments, each completed job is needed as soon as it is processed. In such environments, one 
is interested in minimizing total completion times of  all jobs. This objective is particularly important in environments where 
reducing inventory or holding cost is of  primary concern. The literature survey reveals that the only researchers addressing 
total completion time criterion in a two-stage flowshop problem are Tozkapan et al. (2003), Al-Anzi and Allahverdi (2006), 
and Allahverdi and An-Anzi (2009). Tozkapan et al. (2003) developed a lower bound and a dominance relation, and utilized 
the lower bound and the dominance relation in a branch and bound algorithm. They also proposed two heuristics to find an 
upper bound for their branch and bound algorithm. On the other hand, Al-Anzi and Allahverdi (2006) proposed two 
algorithms and showed that one algorithm is optimal under certain conditions. They also proposed a tabu search and a 
simulated annealing heuristic for the problem. Moreover, they proposed a hybrid tabu search heuristic and showed by 
computational analysis that their proposed hybrid tabu search heuristic is more efficient and can easily be used for large 
sized problems. Allahverdi and An-Anzi (2009) addressed the same problem with the same objective function but where 
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setup times are considered as separate from processing times. They proposed a dominance relation and presented heuristics 
to solve the problem. 

Some research has also been conducted on the problem with a weighted sum of  makespan and mean completion time 
performance measures. Allahverdi and Al-Anzi (2008) proposed three heuristics and showed that one of  them performed 
better than the others. Torabzadeh and Zandieh (2010) proposed a new heuristic which was indicated to perform better than 
the best heuristic of  Allahverdi and Al-Anzi (2008). 

The literature aforementioned addressed the two-stage assembly flowshop scheduling problem where there exists only 
one machine at the second stage, i.e., at the assembly stage. Recently, Sung and Kim (2008) addressed the two-stage 
assembly flowshop problem consisting of  two stages where there are two machines at the first stage (i.e., m=2) while there 
are two independent and identical assembly machines at the second stage. There are n jobs to be scheduled and each job has 
three operations. For each job, the first two operations are conducted at the first stage by the two machines at the first stage 
independently and a final operation in the second stage by one of  the two assembly machines, working independently, at the 
second stage. The last operation at the second stage may start only after the two operations at the first stage are completed. 
Sung and Kim (2008) presented a branch-and-bound algorithm and provided an efficient heuristic for the problem with the 
total completion time minimization objective function. Their heuristic is called SAK heuristic in this paper. Sung and Kim 
(2008) also presented various applications of  the problem. In this paper, we consider a generalization of  the problem with 
the same objective function and propose three heuristics; a hybrid tabu search (HTS), a self-adaptive differential evolution 
(SDE), and a new self-adaptive differential evolution (NSDE). We show that our proposed heuristics outperform that of  
Sung and Kim (2008) (SAK). In the generalization of  the problem, we assume that there are two stages where there are m 
(m≥2) machines in parallel at the first stage while there are two machines in parallel at the second stage which is the 
assembly stage. Each job consists of  a set of  m+1 operations. The first m operations are completed at stage one in parallel 
(operation 1 on machine 1, operation 2 on machine 2, …, operation m on machines m) while the last operation is performed 
on one of  the two machines at the second (assembly) stage.  

In Section 2, we present the mathematical model of  the problem. In Section 3, the proposed heuristics are presented 
while the evaluation of  the proposed and earlier developed heuristics is conducted in Section 4. Finally, a summary of  the 
work and direction for the future research are given in Section 5. 

 
2. PROBLEM FORMULATION 

There are two stages where there are m machines in parallel at stage one while there are two machines in parallel at the 
second (assembly) stage. Each job consists of  a set of  m+1 operations. The first m operations are completed at stage one in 
parallel (operation 1 on machine 1, operation 2 on machine 2, …, operation m on machines m) while the last operation is 
performed on one of  the two machines at the second (assembly) stage.   

We assume that n jobs are simultaneously available at time zero and that preemption is not allowed, i.e., any started 
operation has to be completed without interruptions. 

Let    
ti,j :  operation time of  job i on machine k (at stage one), i=1, …, n, k=1, …, m where job i consists of  k operations 

and each operation is performed by one of  the m machines at the first stage. 
t[j,k]:  operation time of  the job in position j on machine k (at stage one), where job i consists of  k operations and each 

operation is performed by one of  the m machines at the first stage. 
pi:  operation time of  job i on assembly machine (at stage two), which can be processed by either machine 1 or 

machine 2 at the second stage with the same speed 
p[j]:  operation time of  the job in position j on assembly machine (at stage two), which can be processed by either 

machine 1 or machine 2 at the second stage with the same speed 
A1:  Availability time of  machine 1 at the assembly stage, which indicates when the machine becomes idle so that it 

can handle the incoming job 
A2:  Availability time of  machine 2 at the assembly stage, which indicates when the machine becomes idle so that it 

can handle the incoming job 
C[j]:  completion time of  the job in position j of  a given sequence, which denotes the time when all operations at the 

first stage, and the operation at the second stage are completed.  
TCT: Total completion time of  all jobs on the second stage 
It should be noted that the operation time of  job i is the same regardless of  which of  the two assembly machines it is 

going to be processed on. It should be also noted that job k is complete once all of  its operations tk,j (j=1, …, m) and pk are 
completed where the operation pk may start only after all operations tk,j (j=1, …, m) have been completed. It is known that 
permutation schedules are dominant. In other words, the sequences of  the jobs at the first and second stages are the same. 
Therefore, only permutation schedules are considered. 

The completion time of  the job in position j of  a given sequence can be computed as:  
Step 1: Set A1=A2=0, j=1 
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Step 2: If  j>n, stop  
Step 3: If  A1<=A2 
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Step 5: If  j=j+1, go to Step 2 
 
Step 3 states that machine 2 at the assembly stage is busy while machine 1 at the assembly stage is available, therefore, 

the current job is assigned to machine 1 at the assembly machine. Accordingly, the completion time of  that job is computed 
by the first equation given in the Step 3 and the availability of  machine 1 is updated next. Otherwise, the availability of  time 
machine 2 is smaller than that of  machine 1, and hence, the current job is assigned to machine 2. Again, then the 
completion time of  this job is computed by the first equation in Step 4, and next the availability of  machine 2 is updated.  

Once completion times of  the jobs are computed as described above, the total completion time is computed as 

TCT = 
[ ]

1

n

i
i

C

  

 
3. PROPOSED HEURISTICS 

It should be noted that when there is only one machine at the first stage, i.e., m=1, then the problem reduces to the 
regular two machine flowshop scheduling problem. It is known that the regular two machine flowshop scheduling problem 
with the objective function considered in this paper is NP-hard, Garey et al. (1976). Therefore, our problem is also NP-had. 
Hence, we propose heuristics to solve the problem. We propose three heuristics; a hybrid tabu search (HTS), a self-adaptive 
differential evolution (SDE), and a new self-adaptive differential evolution (NSDE). These three heuristics are described in 
subsections 3.2-3.4 after the description of  the only existing heuristic of  SAK for the problem in the next subsection.  

 
3.1  Sung and Kim Heuristic (SAK) 

  
The problem considered in this paper was addressed by Sung and Kim (2008) for the special case of  having only two 

machines at the first stage, i.e., m=2. Sung and Kim (2008) proposed a branch-and-bound algorithm and also developed an 
efficient heuristic algorithm for the problem. The heuristic proposed by Sung and Kim (2008) is a processing-time-based 
pairwise exchange heuristic mechanism which is called SAK in this paper. Since we consider the problem with an arbitrary 
m value, we generalize their heuristic to handle m (m≥2) machines scenario at the first stage as their heuristic was developed 
for the case of  m=2. However, for a fair comparison, we will also consider the case of  m=2 in the computational 
experiments in addition to m>2.  

The processing-time-based pairwise exchange relaxed heuristic mechanism SAK can be summarized as follows: 

 Step 1: Compute psumj = (
[ , ]

1

m

j i
i

t

  +p[j]) for each job at position j. Let K denote the initial job sequence 

obtained by arranging the associated psumj values in the Shortest Processing Time (SPT) order. Then, let H 
denote all the intermediate sequences that can result from the pairwise exchange operations implemented on the 
initial heuristic sequence K. The best of  these sequences can be obtained by repeatedly updating of  the pairwise 
exchange operations. 

 Step 2: Set x = 1, y = x+1, exchange the xth job and the yth job in the initial sequence K. If  TCT is improved, 
declare it as the current H. 

 Step 3: Update y = y+1, exchange the xth job and yth job in the sequence K. If  TCT is improved, declare it as the 
current H. 

 Step 4: If  y = n, go to Step 5, else go to Step 3. 
 Step 5: Update x = x+1. Set y = x+1, exchange the xth job and the yth job in the sequence H. If  TCT is improved, 

declare it as the current H. 
 Step 6: If  x = n, declare the current H as the final sequence K and stop, otherwise go to Step 5. 
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3.2  Hybrid Tabu Search (HTS) 

  
Al-Anzi and Allahverdi (2006) proposed three heuristics, namely, a simulated annealing, a tabu search, and a hybrid 

tabu search (HTS) for the problem addressed in this paper with only one assembly machine at the second stage. They 
showed that HTS outperforms both of  the other heuristics by a large margin. They also showed that HTS significantly 
outperforms the two earlier developed heuristics by Tozkapan et al. (2003).  Since HTS is known to be the best heuristic 
for the problem, we consider a generalized version of  the HTS as one of  the heuristics for the problem addressed in this 
paper with two independent assembly machines at the second stage. The following is an algorithmic description of  the 
generalized version of  the heuristic HTS. It should be noted that among the two assembly machines, the first available one 
is assigned to a job having all of  its m components on the first stage completed. The sequences S1, S2, and S3 in the 
following algorithm are the same sequences that are described by Al-Anzi and Allahverdi (2006), and are described in the 
Appendix. 

The main idea behind the hybrid tabu search heuristic is to introduce the concept of  probability of  accepting 
exchanges that are not necessarily of  the best objective function of  the neighborhood of  the tabu search heuristic. In other 
words, the hybrid tabu search heuristic is allowed to accept exchanges that are not in the tabu list.  

 
Hybrid Tabu Search Heuristic (HTS) 
Begin 
Initialize Tabu h list with maximum size of  4 
Select the best sequence among S1, S2, and S3 as the current sequence 
Let L1 = value of  the objective function with initial sequence 
Let T1 = 0.1 
While T1 ≥ 0.0001 
Begin 
 Repeat 50 times 
 Begin 
  Pick two random positions j and k where (j,k) is not in the Tabu list h 
  Swap jobs in the positions of  j and k 
  Let L2 = value of  the objective function with the sequence after the swap 
  Set j2=j and k2=k 
  Swap back jobs in the positions of  j and k 
 For all possible combinations of  j and k (i.e., explore all neighborhood) 
 Begin 
   If (j,k) is not in the Tabu list then 
   Begin  

 Swap jobs in the positions of  j and k 
 Let L3 = value of  the objective function after the swap 
 If (L3 < L2) then 
 Begin 
  Set L2 = L3, j2=j and k2=k 
 Else 
   Compute d and f  where 

 d = 3 1
1

L L
L
  

 f  = 
100*

1
d

Te


 
 if  (L3 > L2 and with probability f) then 

      Begin 
    Set L2 = L3, j2=j and k2=k 
      End If 
 End If 
 Reverse swap 

 End If 
End For 
Swap jobs in the positions of  j2 and k2 
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Add (j2,k2) to front of  Tabu 
If  the Tabu maximum list size is exceeded, then delete the item at the end of  the list h 
Update L1 = value of  the objective function with current sequence 

       End Repeat 
 Let T1 = T1*0.98 
End While 
End Heuristic 

 
It should be noted that we have fine tuned the parameters of  the HTS for the current problem, see Table 1. 
 

3.3  A Self-Adaptive Differential Evolution (SDE) 
 
Differential evolution (DE) heuristics have been applied to solve a wide range of  problems in different areas including 

scheduling, e.g., Onwubolu and Davendra (2006). Finding the best values for the control parameters in DE heuristics is a 
time consuming task. Therefore, a version of  DE, where the control parameters are self-adaptive, was proposed by Omran 
et al. (2005). This new version is called Self-adaptive Differential Evolution (SDE). Al-Anzi and Allahverdi (2007) adapted this 
SDE to the two-stage assembly flowshop scheduling problem to minimize maximum lateness. They showed that SDE 
performed much better than other heuristics. Since the problem addressed in this paper is also two-stage assembly flowshop 
problem, we use this SDE as one of  the heuristics for the current problem. Since we have a different objective function and 
the fact that there are two assembly machines at the second stage rather than one, we have to adapt the SDE to the current 
problem. First of  all the objective function that Al-Anzi and Allahverdi (2007) considered was maximum lateness (Lmax). 
However, the objective function considered in the current paper is total completion time TCT), and hence, in the steps of  
the SDE algorithm proposed by Al-Anzi and Allahverdi (2007) “Lmax” should be replaced with “TCT”.  In other words, the 
partial sequences are evaluated based on TCT values rather than Lmax values. The second difference is that Al-Anzi and 
Allahverdi (2007) considered the problem with setup times while in this paper we have not considered setup times. Hence, 
setup time values should be set to zero which indicates setup times are ignored. The third difference is that there are two or 
more parallel machines at the second stage, and hence, a job completing all of  its operations at the first stage can be 
assigned to any of  the k parallel machines at the second stage whichever one becomes available first.   

The steps of  the SDE are not described in this paper in order to avoid repetition. It can easily be obtained from 
Al-Anzi and Allahverdi (2007). It should be noted that among the two assembly machines, the first available one is assigned 
to a job having all of  its m components on the first stage completed. Similar to HTS, we have fine tuned the parameters of  
SDE for the current problem, see Table 1.  

 
3.4  A New Self-Adaptive Differential Evolution (NSDE) 

  
Allahverdi and Al-Anzi (2009) proposed a modification to the SDE that was proposed by Al-Anzi and Allahverdi 

(2007), and called it New Self-Adaptive Differential Evolution (NSDE). The difference between the SDE that was proposed 
by Al-Anzi and Allahverdi (2007) and the NSDE proposed by Allahverdi and Al-Anzi (2009) is the introduction of  a new 
step in the SDE. In this step, a random pair wise exchange is conducted which results in children of  crossover operator with 
a certain probability. The problem addressed in this paper is similar to the one addressed by Allahverdi and Al-Anzi (2009), 
we use this NSDE as one of  the heuristics for the current problem. However, since we do not consider setup times in this 
paper and the fact that there are two assembly machines at the second stage rather than one, we have to adapt the NSDE of  
Allahverdi and Al-Anzi (2009) to the current problem. 

It should be noted that in the current paper there are two or more parallel machines at the second stage unlike only one 
machine at the second stage of  the problem addressed by Allahverdi and Al-Anzi (2009). Therefore, a job completing all of  
its k operations at the first stage can be assigned to any of  the machines at the second stage whichever one becomes 
available first.  The second difference is that Al-Anzi and Allahverdi (2009) considered the problem with setup times while 
in this paper we have not considered setup times. Hence, setup time values should be set to zero which indicates setup times 
are ignored.  

The steps of  the NSDE are not described in this paper in order to avoid repetition. It can be obtained from Allahverdi 
and Al-Anzi (2009). It should be noted that among the two assembly machines, the first available one is assigned to a job 
having all of  its m components on the first stage completed. Similar to HTS and SDE, we have fine tuned the parameters of  
NSDE for the current problem, see Table 1.  
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4. COMPUTATIONAL EXPERIMENTS 

In this section, we first describe how the parameters of  the proposed three heuristics are set in subsection 4.1., and 
then the evaluation of  heuristics is described in subsection 4.2.  

 
4.1  Setting Heuristic Parameters 

 
To optimize the performance of  the proposed heuristics, fine tuning of  their parameters has been performed. An 

initial estimate for the best value of  a given parameter of  a heuristic is obtained by changing the values of  that parameter 
while keeping all other parameters of  the heuristic as constant. After some experimentations and after no major changes in 
the performance have been noticed, the parameters were set as given in Table 1.  

 
Table 1. Parameter fine tuning for the proposed heuristics 

Heuristic Parameter Range Best value 
HTS Imax 20,000 – 50,000  

with an increment of  5,000 
38,000 

h 2 – 7 
with an increment of  1 

3 

SDE POP n – 5n 
with an increment of  n 

3n 

GEN n – 5n 
with an increment of  n 

3n 

CP n – 5n 
with an increment of  n 

2n 

y 1/6 - 5/6 
with an increment of  1/6 

4/6 

Pri 0.1 – 0.2 
with an increment of  0.005 

0.125 

NSDE POP n – 5n 
with an increment of  n 

3n 

GEN n – 5n 
with an increment of  n 

3n 

CP n – 5n 
with an increment of  n 

2n 

y 1/6 - 5/6 
with an increment of  1/6 

4/6 

Pri 0.2 – 0.2 
with an increment of  0.005 

0.125 

 
4.2  Proposed Heuristic Evaluation 

 
The proposed HTS, NSDE, and SDE heuristics and SAK heuristic were implemented in C under GCC-3.4.2 compiler 

using the built-in math library. The machine used was a Sun Fire V880 with 4 CPU processors of  900MHz running under 
Solaris Version 9.0 operating system with 8GB RAM. To measure the effectiveness of  the heuristics, we compared the 
performance of  the four heuristics against each other and against a random solution.  

The processing times were randomly generated from a uniform distribution [1, 100] on all m machines at the first stage 
as well as on the two assembly machines at the second stage. In the scheduling literature, most researchers have used this 
distribution in their experimentation. The reason for using a uniform distribution with a wide range is that the variance of  
this distribution is large and if  a heuristic performs well with such a distribution, it is likely to perform well with other 
distributions.  

Problem data were generated for different number of  jobs: 30, 40, 50, 60, and 70. The experimentation was conducted 
for the number of  machines at the first stage being 2, 4, 6 or 8. We compared the performance of  the heuristics using two 
measures: average percentage error (Error) and standard deviation (Std) out of  thirty replicates. The percentage error is 
defined as 100* (TCT of  the heuristic – TCT of  the best heuristic)/(TCT of  the best heuristic) where TCT denotes total completion 
time.  
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There are 20 combinations for different values of  n (30, 40, 50, 60, 70) and m (2, 4, 6, 8). Thirty replicates were 
generated for each combination, and therefore, a total of  600 instances were generated and evaluated. For the sake of  
brevity, the results will not be tabulated. The summary of  the results are presented in Figures 1-4. A random solution was 
also considered for comparison purposes. However, the average error for the random solution was very large (on average, 
more than 30 times of  the error of  the worst heuristic) compared with the other heuristics, and therefore, is not reported in 
the figures.  

The overall average errors and the standard deviation of  the errors of  all the heuristics are summarized in Figure 1 and 
Figure 2, respectively. Figure 1(2) illustrates the overall average errors (standard deviation of  the errors) with respect to the 
number of  jobs (n). The figures indicate that the performance of  the heuristics get a bit closer to each other as the number 
of  jobs increases.  Figure 3 shows the results versus the number of  machines at the first stage. Figure 3 indicates that as the 
number of  machines at the first stage increases, the performances of  the heuristics get closer to each other. The figures 1-3 
indicate that HTS performs much better than SAK (as expected) including for the case of  m=2, and SDE and NSDE 
perform better than HTS. Comparison of  the performances of  SDE and NSDE reveals that NSDE outperforms SDE.  

The overall average errors of  NSDE, SDE, HTS, and SAK over all n and m values were 0.08, 0.24, 0.46, and 1.01, 
respectively.  It should be noted that the overall average error of  SAK was more than double that of  HTS while the 
average CPU time of  SAK was five times that of  HTS, see Figure 4. This clearly indicates that the heuristic HTS is much 
better than the only existing heuristic available for the problem, i.e., SAK.   

The performances HTS and SAK heuristics were statistically tested by using a t test. The following hypothesis testing 
was conducted for all replica combinations for comparing the performances of  HTS and SAK statistically: 

Null Hypothesis: The average error of  HTS = The average error of  SAK 
Alternative Hypothesis: The average error of  HTS < The average error of  SAK 
The null hypotheses were rejected for 100% of  the combinations at 99% significance level. This implies that the 

average error of  HTS is statistically smaller than that of  SAK. 
Furthermore, since the best performing heuristics are NSDE and SDE, the results for these two heuristics were 

statistically tested by using a t test. More specifically, the following hypothesis testing was conducted for all replica 
combinations; 

Null Hypothesis: The average error of  NSDE = The average error of  SDE 
Alternative Hypothesis: The average error of  NSDE < The average error of  SDE 
The null hypotheses were rejected for 95% of  the combinations at 99% significance level. This implies that the average 

error of  NSDE is statistically smaller than that of  SDE. Before concluding that NSDE outperforms SDE one has to also 
consider CPU time in addition to the average error. The CPU times of  all the heuristics are summarized in Figure 4. As can 
be seen from the figure, the CPU times of  SDE and NSDE are close to each other. Moreover, even for the largest size of  
the problem (n=70), the CPU time of  NSDE is less than 45 seconds. Therefore, it can now be stated that NSDE 
outperforms SDE.  

 

 
Figure 1. The average error versus the number of  jobs 
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Figure 2. The standard deviation of  the error versus the number of  jobs 

 
 
 

 
Figure 3. The average error versus the number of  machines at the first stage 
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Figure 4. The average CPU time (in seconds) versus number of  jobs 

 
5. SUMMARY AND FUTURE RESEARCH 

The scheduling problem of  a two-stage assembly flowshop is considered with the objective of  minimizing total 
completion time of  all n available jobs. The first stage consists of  m machines which produce their own products. Then, 
these m components are then processed by one of  the two parallel machines at the second stage. The problem is NP-hard 
since it is known that the problem is NP-hard when there exists only one machine at the first stage and one machine at the 
second stage. This problem was addressed earlier in the literature where an efficient heuristic, called SAK, was developed for 
the case when m=2. We addressed the same problem for the case when m≥2. We proposed three heuristics, called SDE, 
NSDE, and HTS. The proposed three heuristics along with the only existing heuristic SAK were evaluated through 
randomly generated sets of  data. The computational analysis indicated that the overall average errors of  NSDE, SDE, HTS, 
and SAK over all n and m values were 0.08, 0.24, 0.46, and 1.01, respectively. Therefore, the overall average error of  SAK 
was more than twice that of  HTS while the average CPU time of  SAK was five times that of  HTS. This clearly indicates 
that the heuristic HTS is much better than the only existing heuristic available for the problem, i.e., SAK. The compuatioanl 
analysis further indicated that the heuristic SDE performed better than the heuristic HTS and that the heuristic NSDE 
perfomed better than that of  SDE.  

We assumed that setup times are included in the processing times in this paper. However, this may not be necessarily 
the case for some scheduling environments, e.g., Allahverdi and Soroush (2008) and Allahverdi et al. (2008). For such 
scheduling problems, the heuristics developed in this paper may not yield desirable results. Therefore, a possible extension is 
to address the problem considered in the paper where setup times are treated as independent from processing times. 
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APPENDIX  
 

We use an example of  scheduling five jobs to illustrate the concept of  neighborhood of  a sequence for our problem. 
Let us assume that at some point of  time we have three sequences S1, S2, and S3 as follows. 

S1 = [2, 3, 4, 1, 5] 
S2 = [2, 5, 4, 1, 3] 
S3 = [2, 4, 1, 3, 5] 

In the above example, it is easy to see that sequences S1 and S2 are closer to each other than sequences S1 and S3. This 
is because, we can obtain S2 from S1 by exchanging jobs 3 and 5 in the sequence while to obtain S3 from S1 one needs to 
reorder jobs 3, 4 and 1. In this context, we define the distance between two sequences as the number of  mismatches 
between the sequences. In the above example, the distance between S1 and S2 is 2 while that of  S1 and S3 is 3. Notice that 
the minimum distance we can achieve according to this definition is 2 for any sequence. Hence, in our heuristic, the 
neighborhood of  a sequence can be defined as all sequences that have a distance of  2 from the current sequence. A 
complete set of  neighborhood of  distance two can be achieved by simply swapping all pairs of  jobs in a sequence.  
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