

1813-713X Copyright © 2012 ORSTW

International Journal of Operations Research Vol. 9, No. 2, 66−75 (2012)

Better Heuristics for a Two-Stage Multi-Machine Assembly
Scheduling Problem to Minimize Total Completion Time

Fawaz S. Al-Anzi1 and Ali Allahverdi2∗

1Department of Computer Engineering, Kuwait University, P.O. Box 5969, Safat Kuwait

2Department of Industrial and Management Systems Engineering, Kuwait University, P.O. Box 5969, Safat Kuwait

Received January 2012; Revised April 2012; Accepted April 2012

Abstract We address the two-stage multi-machine assembly scheduling problem to minimize total completion times of
all jobs. The first stage consists of m independently working machines where each machine produces its own component.
The second stage consists of two independent and identical assembly machines. The processing of a job at the second stage
cannot start until its m components, produced by the m machines at the first stage, are complete. This problem has been
recently addressed in the literature for which an efficient heuristic, called SAK, was developed for the case when m=2. In
this paper, we address the problem for the case m≥2. We propose a hybrid tabu search (HTS) heuristic and show that the
overall average error of SAK is more than twice that of HTS while the average CPU time of SAK is five times that of HTS.
This clearly indicates that the heuristic HTS is much better than the only existing heuristic available for the problem, i.e.,
SAK. We also propose two more heuristics, called SDE and NSDE, and show that the overall average error of SDE is
about half of that of HTS. Furthermore, we show that the overall average error of NSDE is about one third that of SDE.

Keywords Scheduling, assembly flowshop, total completion time, heuristic

1. INTRODUCTION

The two-stage assembly flowshop problem consists of two stages where there are m machines at the first stage while
there is only a single assembly machine at the second stage. There are n jobs to be scheduled and each job has m+1
operations. For each job, the first m operations are conducted at the first stage by m machines in parallel and a final
operation in the second stage by the assembly machine. The last operation at the second stage may start only after all m
operations at the first stage are completed. This problem has many applications in industry, and hence, has received an
increasing attention of researchers. Lee et al. (1993) described an application in a fire engine assembly plant while Potts et al.
(1995) described an application in personal computer manufacturing. Another application of the problem is in the area of
queries scheduling on distributed database systems, Allahverdi and Al-Anzi (2006a). In short, many real life problems can be
modeled as a two-stage assembly flowshop scheduling problem. In particular, manufacturing of almost all items may be
modeled as a two-stage assembly scheduling problem.

The two-stage assembly flowshop scheduling problem has been addressed with respect to different performance
measures. The problem was addressed with respect to makespan performance measure by Lee et al. (1993), Potts et al.
(1995), Hariri and Potts (1997), Haouari and Daouas (1999), Sun et al. (2003), and Allahverdi and Al-Anzi (2006b) while it
was addressed with respect to maximum lateness performance measure by Allahverdi and Al-Anzi (2006a) and Al-Anzi and
Allahverdi (2007).

For some scheduling environments, each completed job is needed as soon as it is processed. In such environments, one
is interested in minimizing total completion times of all jobs. This objective is particularly important in environments where
reducing inventory or holding cost is of primary concern. The literature survey reveals that the only researchers addressing
total completion time criterion in a two-stage flowshop problem are Tozkapan et al. (2003), Al-Anzi and Allahverdi (2006),
and Allahverdi and An-Anzi (2009). Tozkapan et al. (2003) developed a lower bound and a dominance relation, and utilized
the lower bound and the dominance relation in a branch and bound algorithm. They also proposed two heuristics to find an
upper bound for their branch and bound algorithm. On the other hand, Al-Anzi and Allahverdi (2006) proposed two
algorithms and showed that one algorithm is optimal under certain conditions. They also proposed a tabu search and a
simulated annealing heuristic for the problem. Moreover, they proposed a hybrid tabu search heuristic and showed by
computational analysis that their proposed hybrid tabu search heuristic is more efficient and can easily be used for large
sized problems. Allahverdi and An-Anzi (2009) addressed the same problem with the same objective function but where

∗ Corresponding author’s email: ali.allahverdi@ku.edu.kw

International Journal of
Operations Research

67
Al-Anzi and Allahverdi: Better Heuristics for a Two-Stage Multi-Machine Assembly Scheduling Problem to Minimize Total Completion Time
IJOR Vol. 9, No. 2, 66−75 (2012)

setup times are considered as separate from processing times. They proposed a dominance relation and presented heuristics
to solve the problem.

Some research has also been conducted on the problem with a weighted sum of makespan and mean completion time
performance measures. Allahverdi and Al-Anzi (2008) proposed three heuristics and showed that one of them performed
better than the others. Torabzadeh and Zandieh (2010) proposed a new heuristic which was indicated to perform better than
the best heuristic of Allahverdi and Al-Anzi (2008).

The literature aforementioned addressed the two-stage assembly flowshop scheduling problem where there exists only
one machine at the second stage, i.e., at the assembly stage. Recently, Sung and Kim (2008) addressed the two-stage
assembly flowshop problem consisting of two stages where there are two machines at the first stage (i.e., m=2) while there
are two independent and identical assembly machines at the second stage. There are n jobs to be scheduled and each job has
three operations. For each job, the first two operations are conducted at the first stage by the two machines at the first stage
independently and a final operation in the second stage by one of the two assembly machines, working independently, at the
second stage. The last operation at the second stage may start only after the two operations at the first stage are completed.
Sung and Kim (2008) presented a branch-and-bound algorithm and provided an efficient heuristic for the problem with the
total completion time minimization objective function. Their heuristic is called SAK heuristic in this paper. Sung and Kim
(2008) also presented various applications of the problem. In this paper, we consider a generalization of the problem with
the same objective function and propose three heuristics; a hybrid tabu search (HTS), a self-adaptive differential evolution
(SDE), and a new self-adaptive differential evolution (NSDE). We show that our proposed heuristics outperform that of
Sung and Kim (2008) (SAK). In the generalization of the problem, we assume that there are two stages where there are m
(m≥2) machines in parallel at the first stage while there are two machines in parallel at the second stage which is the
assembly stage. Each job consists of a set of m+1 operations. The first m operations are completed at stage one in parallel
(operation 1 on machine 1, operation 2 on machine 2, …, operation m on machines m) while the last operation is performed
on one of the two machines at the second (assembly) stage.

In Section 2, we present the mathematical model of the problem. In Section 3, the proposed heuristics are presented
while the evaluation of the proposed and earlier developed heuristics is conducted in Section 4. Finally, a summary of the
work and direction for the future research are given in Section 5.

2. PROBLEM FORMULATION

There are two stages where there are m machines in parallel at stage one while there are two machines in parallel at the
second (assembly) stage. Each job consists of a set of m+1 operations. The first m operations are completed at stage one in
parallel (operation 1 on machine 1, operation 2 on machine 2, …, operation m on machines m) while the last operation is
performed on one of the two machines at the second (assembly) stage.

We assume that n jobs are simultaneously available at time zero and that preemption is not allowed, i.e., any started
operation has to be completed without interruptions.

Let
ti,j : operation time of job i on machine k (at stage one), i=1, …, n, k=1, …, m where job i consists of k operations

and each operation is performed by one of the m machines at the first stage.
t[j,k]: operation time of the job in position j on machine k (at stage one), where job i consists of k operations and each

operation is performed by one of the m machines at the first stage.
pi: operation time of job i on assembly machine (at stage two), which can be processed by either machine 1 or

machine 2 at the second stage with the same speed
p[j]: operation time of the job in position j on assembly machine (at stage two), which can be processed by either

machine 1 or machine 2 at the second stage with the same speed
A1: Availability time of machine 1 at the assembly stage, which indicates when the machine becomes idle so that it

can handle the incoming job
A2: Availability time of machine 2 at the assembly stage, which indicates when the machine becomes idle so that it

can handle the incoming job
C[j]: completion time of the job in position j of a given sequence, which denotes the time when all operations at the

first stage, and the operation at the second stage are completed.
TCT: Total completion time of all jobs on the second stage
It should be noted that the operation time of job i is the same regardless of which of the two assembly machines it is

going to be processed on. It should be also noted that job k is complete once all of its operations tk,j (j=1, …, m) and pk are
completed where the operation pk may start only after all operations tk,j (j=1, …, m) have been completed. It is known that
permutation schedules are dominant. In other words, the sequences of the jobs at the first and second stages are the same.
Therefore, only permutation schedules are considered.

The completion time of the job in position j of a given sequence can be computed as:
Step 1: Set A1=A2=0, j=1

68
Al-Anzi and Allahverdi: Better Heuristics for a Two-Stage Multi-Machine Assembly Scheduling Problem to Minimize Total Completion Time
IJOR Vol. 9, No. 2, 66−75 (2012)

Step 2: If j>n, stop
Step 3: If A1<=A2

[] [,] 1 []1,...,
1

max max ,
j

j i k jk m
i

C t A p

1 1 []j
A A p

Step 4: If A1>A2

[] [,] 2 []1,...,
1

max max ,
j

j i k jk m
i

C t A p

2 2 []j
A A p

Step 5: If j=j+1, go to Step 2

Step 3 states that machine 2 at the assembly stage is busy while machine 1 at the assembly stage is available, therefore,

the current job is assigned to machine 1 at the assembly machine. Accordingly, the completion time of that job is computed
by the first equation given in the Step 3 and the availability of machine 1 is updated next. Otherwise, the availability of time
machine 2 is smaller than that of machine 1, and hence, the current job is assigned to machine 2. Again, then the
completion time of this job is computed by the first equation in Step 4, and next the availability of machine 2 is updated.

Once completion times of the jobs are computed as described above, the total completion time is computed as

TCT =
[]

1

n

i
i

C

3. PROPOSED HEURISTICS

It should be noted that when there is only one machine at the first stage, i.e., m=1, then the problem reduces to the
regular two machine flowshop scheduling problem. It is known that the regular two machine flowshop scheduling problem
with the objective function considered in this paper is NP-hard, Garey et al. (1976). Therefore, our problem is also NP-had.
Hence, we propose heuristics to solve the problem. We propose three heuristics; a hybrid tabu search (HTS), a self-adaptive
differential evolution (SDE), and a new self-adaptive differential evolution (NSDE). These three heuristics are described in
subsections 3.2-3.4 after the description of the only existing heuristic of SAK for the problem in the next subsection.

3.1 Sung and Kim Heuristic (SAK)

The problem considered in this paper was addressed by Sung and Kim (2008) for the special case of having only two

machines at the first stage, i.e., m=2. Sung and Kim (2008) proposed a branch-and-bound algorithm and also developed an
efficient heuristic algorithm for the problem. The heuristic proposed by Sung and Kim (2008) is a processing-time-based
pairwise exchange heuristic mechanism which is called SAK in this paper. Since we consider the problem with an arbitrary
m value, we generalize their heuristic to handle m (m≥2) machines scenario at the first stage as their heuristic was developed
for the case of m=2. However, for a fair comparison, we will also consider the case of m=2 in the computational
experiments in addition to m>2.

The processing-time-based pairwise exchange relaxed heuristic mechanism SAK can be summarized as follows:

 Step 1: Compute psumj = (
[,]

1

m

j i
i

t

 +p[j]) for each job at position j. Let K denote the initial job sequence

obtained by arranging the associated psumj values in the Shortest Processing Time (SPT) order. Then, let H
denote all the intermediate sequences that can result from the pairwise exchange operations implemented on the
initial heuristic sequence K. The best of these sequences can be obtained by repeatedly updating of the pairwise
exchange operations.

 Step 2: Set x = 1, y = x+1, exchange the xth job and the yth job in the initial sequence K. If TCT is improved,
declare it as the current H.

 Step 3: Update y = y+1, exchange the xth job and yth job in the sequence K. If TCT is improved, declare it as the
current H.

 Step 4: If y = n, go to Step 5, else go to Step 3.
 Step 5: Update x = x+1. Set y = x+1, exchange the xth job and the yth job in the sequence H. If TCT is improved,

declare it as the current H.
 Step 6: If x = n, declare the current H as the final sequence K and stop, otherwise go to Step 5.

69
Al-Anzi and Allahverdi: Better Heuristics for a Two-Stage Multi-Machine Assembly Scheduling Problem to Minimize Total Completion Time
IJOR Vol. 9, No. 2, 66−75 (2012)

3.2 Hybrid Tabu Search (HTS)

Al-Anzi and Allahverdi (2006) proposed three heuristics, namely, a simulated annealing, a tabu search, and a hybrid

tabu search (HTS) for the problem addressed in this paper with only one assembly machine at the second stage. They
showed that HTS outperforms both of the other heuristics by a large margin. They also showed that HTS significantly
outperforms the two earlier developed heuristics by Tozkapan et al. (2003). Since HTS is known to be the best heuristic
for the problem, we consider a generalized version of the HTS as one of the heuristics for the problem addressed in this
paper with two independent assembly machines at the second stage. The following is an algorithmic description of the
generalized version of the heuristic HTS. It should be noted that among the two assembly machines, the first available one
is assigned to a job having all of its m components on the first stage completed. The sequences S1, S2, and S3 in the
following algorithm are the same sequences that are described by Al-Anzi and Allahverdi (2006), and are described in the
Appendix.

The main idea behind the hybrid tabu search heuristic is to introduce the concept of probability of accepting
exchanges that are not necessarily of the best objective function of the neighborhood of the tabu search heuristic. In other
words, the hybrid tabu search heuristic is allowed to accept exchanges that are not in the tabu list.

Hybrid Tabu Search Heuristic (HTS)
Begin
Initialize Tabu h list with maximum size of 4
Select the best sequence among S1, S2, and S3 as the current sequence
Let L1 = value of the objective function with initial sequence
Let T1 = 0.1
While T1 ≥ 0.0001
Begin
 Repeat 50 times
 Begin
 Pick two random positions j and k where (j,k) is not in the Tabu list h
 Swap jobs in the positions of j and k
 Let L2 = value of the objective function with the sequence after the swap
 Set j2=j and k2=k
 Swap back jobs in the positions of j and k
 For all possible combinations of j and k (i.e., explore all neighborhood)
 Begin
 If (j,k) is not in the Tabu list then
 Begin

 Swap jobs in the positions of j and k
 Let L3 = value of the objective function after the swap
 If (L3 < L2) then
 Begin
 Set L2 = L3, j2=j and k2=k
 Else
 Compute d and f where

 d = 3 1
1

L L
L

 f =
100*

1
d

Te

 if (L3 > L2 and with probability f) then

 Begin
 Set L2 = L3, j2=j and k2=k
 End If
 End If
 Reverse swap

 End If
End For
Swap jobs in the positions of j2 and k2

70
Al-Anzi and Allahverdi: Better Heuristics for a Two-Stage Multi-Machine Assembly Scheduling Problem to Minimize Total Completion Time
IJOR Vol. 9, No. 2, 66−75 (2012)

Add (j2,k2) to front of Tabu
If the Tabu maximum list size is exceeded, then delete the item at the end of the list h
Update L1 = value of the objective function with current sequence

 End Repeat
 Let T1 = T1*0.98
End While
End Heuristic

It should be noted that we have fine tuned the parameters of the HTS for the current problem, see Table 1.

3.3 A Self-Adaptive Differential Evolution (SDE)

Differential evolution (DE) heuristics have been applied to solve a wide range of problems in different areas including

scheduling, e.g., Onwubolu and Davendra (2006). Finding the best values for the control parameters in DE heuristics is a
time consuming task. Therefore, a version of DE, where the control parameters are self-adaptive, was proposed by Omran
et al. (2005). This new version is called Self-adaptive Differential Evolution (SDE). Al-Anzi and Allahverdi (2007) adapted this
SDE to the two-stage assembly flowshop scheduling problem to minimize maximum lateness. They showed that SDE
performed much better than other heuristics. Since the problem addressed in this paper is also two-stage assembly flowshop
problem, we use this SDE as one of the heuristics for the current problem. Since we have a different objective function and
the fact that there are two assembly machines at the second stage rather than one, we have to adapt the SDE to the current
problem. First of all the objective function that Al-Anzi and Allahverdi (2007) considered was maximum lateness (Lmax).
However, the objective function considered in the current paper is total completion time TCT), and hence, in the steps of
the SDE algorithm proposed by Al-Anzi and Allahverdi (2007) “Lmax” should be replaced with “TCT”. In other words, the
partial sequences are evaluated based on TCT values rather than Lmax values. The second difference is that Al-Anzi and
Allahverdi (2007) considered the problem with setup times while in this paper we have not considered setup times. Hence,
setup time values should be set to zero which indicates setup times are ignored. The third difference is that there are two or
more parallel machines at the second stage, and hence, a job completing all of its operations at the first stage can be
assigned to any of the k parallel machines at the second stage whichever one becomes available first.

The steps of the SDE are not described in this paper in order to avoid repetition. It can easily be obtained from
Al-Anzi and Allahverdi (2007). It should be noted that among the two assembly machines, the first available one is assigned
to a job having all of its m components on the first stage completed. Similar to HTS, we have fine tuned the parameters of
SDE for the current problem, see Table 1.

3.4 A New Self-Adaptive Differential Evolution (NSDE)

Allahverdi and Al-Anzi (2009) proposed a modification to the SDE that was proposed by Al-Anzi and Allahverdi

(2007), and called it New Self-Adaptive Differential Evolution (NSDE). The difference between the SDE that was proposed
by Al-Anzi and Allahverdi (2007) and the NSDE proposed by Allahverdi and Al-Anzi (2009) is the introduction of a new
step in the SDE. In this step, a random pair wise exchange is conducted which results in children of crossover operator with
a certain probability. The problem addressed in this paper is similar to the one addressed by Allahverdi and Al-Anzi (2009),
we use this NSDE as one of the heuristics for the current problem. However, since we do not consider setup times in this
paper and the fact that there are two assembly machines at the second stage rather than one, we have to adapt the NSDE of
Allahverdi and Al-Anzi (2009) to the current problem.

It should be noted that in the current paper there are two or more parallel machines at the second stage unlike only one
machine at the second stage of the problem addressed by Allahverdi and Al-Anzi (2009). Therefore, a job completing all of
its k operations at the first stage can be assigned to any of the machines at the second stage whichever one becomes
available first. The second difference is that Al-Anzi and Allahverdi (2009) considered the problem with setup times while
in this paper we have not considered setup times. Hence, setup time values should be set to zero which indicates setup times
are ignored.

The steps of the NSDE are not described in this paper in order to avoid repetition. It can be obtained from Allahverdi
and Al-Anzi (2009). It should be noted that among the two assembly machines, the first available one is assigned to a job
having all of its m components on the first stage completed. Similar to HTS and SDE, we have fine tuned the parameters of
NSDE for the current problem, see Table 1.

71
Al-Anzi and Allahverdi: Better Heuristics for a Two-Stage Multi-Machine Assembly Scheduling Problem to Minimize Total Completion Time
IJOR Vol. 9, No. 2, 66−75 (2012)

4. COMPUTATIONAL EXPERIMENTS

In this section, we first describe how the parameters of the proposed three heuristics are set in subsection 4.1., and
then the evaluation of heuristics is described in subsection 4.2.

4.1 Setting Heuristic Parameters

To optimize the performance of the proposed heuristics, fine tuning of their parameters has been performed. An

initial estimate for the best value of a given parameter of a heuristic is obtained by changing the values of that parameter
while keeping all other parameters of the heuristic as constant. After some experimentations and after no major changes in
the performance have been noticed, the parameters were set as given in Table 1.

Table 1. Parameter fine tuning for the proposed heuristics

Heuristic Parameter Range Best value
HTS Imax 20,000 – 50,000

with an increment of 5,000
38,000

h 2 – 7
with an increment of 1

3

SDE POP n – 5n
with an increment of n

3n

GEN n – 5n
with an increment of n

3n

CP n – 5n
with an increment of n

2n

y 1/6 - 5/6
with an increment of 1/6

4/6

Pri 0.1 – 0.2
with an increment of 0.005

0.125

NSDE POP n – 5n
with an increment of n

3n

GEN n – 5n
with an increment of n

3n

CP n – 5n
with an increment of n

2n

y 1/6 - 5/6
with an increment of 1/6

4/6

Pri 0.2 – 0.2
with an increment of 0.005

0.125

4.2 Proposed Heuristic Evaluation

The proposed HTS, NSDE, and SDE heuristics and SAK heuristic were implemented in C under GCC-3.4.2 compiler

using the built-in math library. The machine used was a Sun Fire V880 with 4 CPU processors of 900MHz running under
Solaris Version 9.0 operating system with 8GB RAM. To measure the effectiveness of the heuristics, we compared the
performance of the four heuristics against each other and against a random solution.

The processing times were randomly generated from a uniform distribution [1, 100] on all m machines at the first stage
as well as on the two assembly machines at the second stage. In the scheduling literature, most researchers have used this
distribution in their experimentation. The reason for using a uniform distribution with a wide range is that the variance of
this distribution is large and if a heuristic performs well with such a distribution, it is likely to perform well with other
distributions.

Problem data were generated for different number of jobs: 30, 40, 50, 60, and 70. The experimentation was conducted
for the number of machines at the first stage being 2, 4, 6 or 8. We compared the performance of the heuristics using two
measures: average percentage error (Error) and standard deviation (Std) out of thirty replicates. The percentage error is
defined as 100* (TCT of the heuristic – TCT of the best heuristic)/(TCT of the best heuristic) where TCT denotes total completion
time.

72
Al-Anzi and Allahverdi: Better Heuristics for a Two-Stage Multi-Machine Assembly Scheduling Problem to Minimize Total Completion Time
IJOR Vol. 9, No. 2, 66−75 (2012)

There are 20 combinations for different values of n (30, 40, 50, 60, 70) and m (2, 4, 6, 8). Thirty replicates were
generated for each combination, and therefore, a total of 600 instances were generated and evaluated. For the sake of
brevity, the results will not be tabulated. The summary of the results are presented in Figures 1-4. A random solution was
also considered for comparison purposes. However, the average error for the random solution was very large (on average,
more than 30 times of the error of the worst heuristic) compared with the other heuristics, and therefore, is not reported in
the figures.

The overall average errors and the standard deviation of the errors of all the heuristics are summarized in Figure 1 and
Figure 2, respectively. Figure 1(2) illustrates the overall average errors (standard deviation of the errors) with respect to the
number of jobs (n). The figures indicate that the performance of the heuristics get a bit closer to each other as the number
of jobs increases. Figure 3 shows the results versus the number of machines at the first stage. Figure 3 indicates that as the
number of machines at the first stage increases, the performances of the heuristics get closer to each other. The figures 1-3
indicate that HTS performs much better than SAK (as expected) including for the case of m=2, and SDE and NSDE
perform better than HTS. Comparison of the performances of SDE and NSDE reveals that NSDE outperforms SDE.

The overall average errors of NSDE, SDE, HTS, and SAK over all n and m values were 0.08, 0.24, 0.46, and 1.01,
respectively. It should be noted that the overall average error of SAK was more than double that of HTS while the
average CPU time of SAK was five times that of HTS, see Figure 4. This clearly indicates that the heuristic HTS is much
better than the only existing heuristic available for the problem, i.e., SAK.

The performances HTS and SAK heuristics were statistically tested by using a t test. The following hypothesis testing
was conducted for all replica combinations for comparing the performances of HTS and SAK statistically:

Null Hypothesis: The average error of HTS = The average error of SAK
Alternative Hypothesis: The average error of HTS < The average error of SAK
The null hypotheses were rejected for 100% of the combinations at 99% significance level. This implies that the

average error of HTS is statistically smaller than that of SAK.
Furthermore, since the best performing heuristics are NSDE and SDE, the results for these two heuristics were

statistically tested by using a t test. More specifically, the following hypothesis testing was conducted for all replica
combinations;

Null Hypothesis: The average error of NSDE = The average error of SDE
Alternative Hypothesis: The average error of NSDE < The average error of SDE
The null hypotheses were rejected for 95% of the combinations at 99% significance level. This implies that the average

error of NSDE is statistically smaller than that of SDE. Before concluding that NSDE outperforms SDE one has to also
consider CPU time in addition to the average error. The CPU times of all the heuristics are summarized in Figure 4. As can
be seen from the figure, the CPU times of SDE and NSDE are close to each other. Moreover, even for the largest size of
the problem (n=70), the CPU time of NSDE is less than 45 seconds. Therefore, it can now be stated that NSDE
outperforms SDE.

Figure 1. The average error versus the number of jobs

0

0.2

0.4

0.6

0.8

1

1.2

1.4

30 40 50 60 70
n

Average Error

SAK

NSDE

SDE

HTS

73
Al-Anzi and Allahverdi: Better Heuristics for a Two-Stage Multi-Machine Assembly Scheduling Problem to Minimize Total Completion Time
IJOR Vol. 9, No. 2, 66−75 (2012)

Figure 2. The standard deviation of the error versus the number of jobs

Figure 3. The average error versus the number of machines at the first stage

0

0.2

0.4

0.6

0.8

1

1.2

2 4 6 8
m

SAK

NSDE

SDE

HTS

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

30 40 50 60 70
n

Std

SAK

NSDE

SDE

HTS

74
Al-Anzi and Allahverdi: Better Heuristics for a Two-Stage Multi-Machine Assembly Scheduling Problem to Minimize Total Completion Time
IJOR Vol. 9, No. 2, 66−75 (2012)

Figure 4. The average CPU time (in seconds) versus number of jobs

5. SUMMARY AND FUTURE RESEARCH

The scheduling problem of a two-stage assembly flowshop is considered with the objective of minimizing total
completion time of all n available jobs. The first stage consists of m machines which produce their own products. Then,
these m components are then processed by one of the two parallel machines at the second stage. The problem is NP-hard
since it is known that the problem is NP-hard when there exists only one machine at the first stage and one machine at the
second stage. This problem was addressed earlier in the literature where an efficient heuristic, called SAK, was developed for
the case when m=2. We addressed the same problem for the case when m≥2. We proposed three heuristics, called SDE,
NSDE, and HTS. The proposed three heuristics along with the only existing heuristic SAK were evaluated through
randomly generated sets of data. The computational analysis indicated that the overall average errors of NSDE, SDE, HTS,
and SAK over all n and m values were 0.08, 0.24, 0.46, and 1.01, respectively. Therefore, the overall average error of SAK
was more than twice that of HTS while the average CPU time of SAK was five times that of HTS. This clearly indicates
that the heuristic HTS is much better than the only existing heuristic available for the problem, i.e., SAK. The compuatioanl
analysis further indicated that the heuristic SDE performed better than the heuristic HTS and that the heuristic NSDE
perfomed better than that of SDE.

We assumed that setup times are included in the processing times in this paper. However, this may not be necessarily
the case for some scheduling environments, e.g., Allahverdi and Soroush (2008) and Allahverdi et al. (2008). For such
scheduling problems, the heuristics developed in this paper may not yield desirable results. Therefore, a possible extension is
to address the problem considered in the paper where setup times are treated as independent from processing times.

ACKNOWLEDGMENT

This research was supported by Kuwait University Research Administration Grant No. EO02/10. The authors would
like to thank two anonymous referees for their comments which greatly improved the quality and presentation of the paper.

REFERENCES

1. Al-Anzi, F.S. and Allahverdi, A. (2006). A hybrid tabu search heuristic for the two-stage assembly scheduling problem.
International Journal of Operations Research, 3:109-119.

2. Al-Anzi, F.S. and Allahverdi, A. (2007). A self-adaptive differential evolution heuristic for two-stage assembly scheduling
problem to minimize maximum lateness with setup times. European Journal of Operational Research, 182: 80-94.

3. Allahverdi, A. and Al-Anzi, F.S. (2006a). A NSDE and a tabu Search Heuristics for Assembly Scheduling Problem of
the Two-Stage Distributed Database Application. Computers & Operations Research, 33: 1056-1080.

4. Allahverdi, A. and Al-Anzi, F.S. (2006b). Evolutionary heuristics and an algorithm for the two-stage assembly
scheduling problem to minimize makespan with setup times. International Journal of Production Research, 44: 4713-4735.

5. Allahverdi, A. and Al-Anzi, F.S. (2008). The two-stage assembly flowshop scheduling problem with bicriteria of
makespan and mean completion time. International Journal of Advanced Manufacturing Technology, 37: 166-177.

0

5

10

15

20

25

30

35

40

45

30 40 50 60 70
n

Average CPU time

SAK

SDE

NSDE

HTS

75
Al-Anzi and Allahverdi: Better Heuristics for a Two-Stage Multi-Machine Assembly Scheduling Problem to Minimize Total Completion Time
IJOR Vol. 9, No. 2, 66−75 (2012)

6. Allahverdi, A. and Al-Anzi, F.S. (2009). The two-stage assembly scheduling problem to minimize total completion time
with setup times. Computers & Operations Research, 36: 2740-2747.

7. Allahverdi A., Ng, C.T., Cheng, T.C.E. and Kovalyov, M.Y. (2008). A survey of scheduling problems with setup times or
costs. European Journal of Operational Research, 187: 985-1032.

8. Allahverdi, A., Soroush, H.M. (2008). The significance of reducing setup times/setup costs. European Journal of
Operational Research, 187: 978-984.

9. Garey, M.R., Johnson, D.S. and Sethi, R. (1976). The complexity of flowshop and jobshop scheduling. Mathematics and
Operations Research, 1: 117-129.

10. Haouari M. and Daouas T. (1999). Optimal scheduling of the 3-machine assembly-type flow shop. RAIRO Recherche
Operationnelle, 33: 439-445.

11. Hariri, A.M.A. and Potts, C.N. (1997). A branch and bound algorithm for the two-stage assembly scheduling problem.
European Journal of Operational Research, 103: 547-556.

12. Lee, C.Y., Cheng, T.C.E. and Lin, B.M.T. (1993). Minimizing the makespan in the 3-machine assembly-type flowshop
scheduling problem. Management Science, 39: 616-625.

13. Omran, M., Salman, A. and Engelbrecht, A. (2005). Self-Adaptive Differential Evolution. Proceedings of the International
Conference on Computational Intelligence and Security, December, Xi'an, China, pp. 192-199.

14. Onwubolu, G. and Davendra, D. (2006). Scheduling flow shops using differential evolution algorithm. European Journal
of Operations Research, 171: 674-692.

15. Potts, C.N., Sevast’janov, S.V., Strusevich, V.A., Van Wassenhove, L.N. and Zwaneveld, C.M. (1995). The two-stage
assembly scheduling problem: Complexity and approximation. Operations Research, 43: 346-355.

16. Sun, X., Morizawa, K. and Nagasawa, H. (2003). Powerful heuristics to minimize makespan in fixed, 3-machine,
assembly-type flowshop scheduling. European Journal of Operational Research, 146: 498-516.

17. Sung, C.S. and Kim, H.A. (2008). A two-stage multiple-machine assembly scheduling problem for minimizing sum of
completion times. International Journal of Production Economics, 113: 1038-1048.

18. Torabzadeh, E. and Zandieh, M. (2010). Cloud theory-based simulated annealing approach for scheduling in the
two-stage assembly flowshop. Advances in Engineering Software, 41: 1238-1243.

19. Tozkapan, A., Kirca, O. and Chung, C.S. (2003). A branch and bound algorithm to minimize the total weighted
flowtime for the two-stage assembly scheduling problem. Computers & Operations Research, 30: 309-320.

APPENDIX

We use an example of scheduling five jobs to illustrate the concept of neighborhood of a sequence for our problem.
Let us assume that at some point of time we have three sequences S1, S2, and S3 as follows.

S1 = [2, 3, 4, 1, 5]
S2 = [2, 5, 4, 1, 3]
S3 = [2, 4, 1, 3, 5]

In the above example, it is easy to see that sequences S1 and S2 are closer to each other than sequences S1 and S3. This
is because, we can obtain S2 from S1 by exchanging jobs 3 and 5 in the sequence while to obtain S3 from S1 one needs to
reorder jobs 3, 4 and 1. In this context, we define the distance between two sequences as the number of mismatches
between the sequences. In the above example, the distance between S1 and S2 is 2 while that of S1 and S3 is 3. Notice that
the minimum distance we can achieve according to this definition is 2 for any sequence. Hence, in our heuristic, the
neighborhood of a sequence can be defined as all sequences that have a distance of 2 from the current sequence. A
complete set of neighborhood of distance two can be achieved by simply swapping all pairs of jobs in a sequence.

	International Journal of
	Begin
	Begin

	Begin
	Begin
	End Repeat

