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Abstract  A multi-item two stage production inventory system with imperfect production process is formulated. Here, a 
constraint on the total budget is imposed where the total budget is imprecise in nature. Shortages are allowed and 
completely backlogged. Stage I (raw materials to semi-finished products) is an automatic process and this process is treated 
by machines. Stage II (semi-finished products to finished products) is also an automatic process and this process is treated 
by another machines. It is assumed that the time of  transporting items from Stage I to Stage II is negligible. The imperfect 
items are reworked and assumed that the inspection time and rework time are very short which also can be neglected. The 
model has been formulated as profit maximization problem in stochastic and fuzzy-stochastic environments by considering 
inventory costs as imprecise in nature. Credibility theory has been used to transform the fuzzy-stochastic model into an 
equivalent deterministic one. To solve the problems, Differential Evolution (DE) algorithm has been suitably developed and 
applied. Finally, to illustrate the model and to show the effectiveness of  the proposed approach a numerical example is 
presented.  
 
Keywords  Two-stage system, inventory, stock-dependent demand, imperfect quality, rework, credibility measure, 
differential evolution  
 
1. INTRODUCTION 

 In most of  the classical economic production quantity (EPQ) model, it is assumed that items produced are of  perfect 
quality, the quality control of  the product generally is not considered. However, in a production system, it is quite natural 
that a machine cannot produce all items perfectly during whole production period. In most of  the production system, a 
certain portion of  defective items are produced and wasted as scraps since they have no recycling or reworking facility. But, 
in modern manufacturing companies four systems of  improving production efficiencies are highly appreciated. These are 
materials requirement planning (MRP), flexible manufacturing system (FMS), optimized product technology (OPT), and just 
in time (JIT). The adjustment of  production rate with variability in market demand is a major component in FMS. Goyal 
and Gunasekaran (1995) have developed an integrated production-inventory-marketing model for deteriorating the EPLS 
and EOQ for raw materials in a multi-stage production system. Bhunia and Maiti (1998) extend the EPLS model by 
considering the finite production rate depending on on-hand inventory and demand simultaneously. 

Two-stage production systems can be found in different applications, like processing and packaging food, extruding 
and milling plastics, shearing and punching or rolling and cutting metals [cf. Szendrovits (1983)]. Szendrovits (1983) 
proposed two-stage production/inventoy models in which smaller lots are produced at one stage and one larger lot is 
produced at the other stage. Kim’s (1999) considered a two-stage lot sizing problems with various lot sizing depending on 
batch transfer and production rates between stages. Hill (2000) extended Kim’s (1999) model providing an alternative way of  
performing the analysis which is easier to understand. Darwish and Ben-Daya (2007) investigated the effect of  imperfect 
production processes involving variable the frequency of  preventive maintenance. Recently, Pearn et al. (2010) also 
investigated the effect of  imperfect production processes with allowable shortages for two stage production system.   

Expensive products, processed or assembled, are not usually scrapped. Consequently, a procedure for recovering the 
defective items would be beneficial to the company. For example, metal book-shelves and defective filing cabinets are usually 
repaired in sheet metal industries, and defective alignment of  steering wheels is corrected to fix the steering column at a 
right-angle with the steering wheels in automobile industries. Scrapping many such items is an expensive proposal for any 
company. Hence, the rejected items are accumulated for a certain number of  cycles and reworked while a rework cost is 
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assessed for not satisfying the demand and other resource constraints. Hayek and Salameh (2001) derived an optimal 
operating policy for the finite production model under the effect of  reworking of  imperfect quality items and assuming that 
all the defective items are repairable. Chiu (2003) examined an EPQ model with scrap items and the reworking of  repairable 
items. Konstantaras and Papachristos (2007) also extended the salameh and Jaber’s (2000) model to the case in which 
withdrawing of  defective units takes place at the end of  the planning horizon and minimized directly the mean average cost 
instead of  maximizing the mean average profit.  

Till now, algorithms have been developed for solving the inventory problems when inventory parameters like, total 
floor space and total budget allocation for replenishment, etc. are precisely known. But in real life situation, these parameters 
may be uncertain in non-stochastic sense. In the competitive market, it is not possible to do the business with predefined 
fixed budgetary capital. Initially, a decision maker (DM) may start with an amount, but, at a later stage, to meet the sudden 
increase of  demand or to avail the sudden fall in the price of  the commodity, he / she is forced to augment some more 
capital as per demand of  the situation. Hence, in this case, budgetary allocation is imprecise. Recently, several researchers 
such as Roy and Maiti (1997), Kar et al. (2000), Roy et al. (2008), Das et al. (2010, 2011) etc. have developed several fuzzy 
inventory models. 

The purpose of  this paper is to study a multi-item, two-stage production inventory cum sale model having imperfect 
production process with rework under budget constraint. Here the production system with random imperfect items is 
separated into two stages. In Stage I, semi-finished products are produced by a set of  machines and in Stage II, finished 
products are produced by another set of  machines. The model has been defined as a profit maximization problem in 
stochastic and fuzzy-stochastic nature. In fuzzy-stochastic model, inventory costs and the constraint goal are imprecise in 
nature. A credibility measure and differential evolution (DE) algorithm are used to solve the model. A numerical example is 
given for illustration of  the theoretical results, and sensitivity analysis for the profit function with respect to some 
parameters are carried out. 

 
2. ASSUMPTIONS AND NOTATIONS 

A multi-item, two-stage production inventory model with rework system is developed on the basis of  following 
assumptions and notations: 

 
2.1  Assumptions 
 

The following assumptions are made: 
 
(i) Inventory system involves two stage and multi-item and is a self  production system. 
(ii) The time horizon is infinite. 
(iii) Shortages are allowed and backlogged. 
(iv) Lead time is zero. 
(v) Production of  Stage I and Stage II starts at same time. 
(vi) Machine breakdown does not occur at any production stage and the handling time between processes is assumed 

to be zero. 
(vii) No defective product is scraped. 
(viii) No defective items are produced during the rework. 
(ix) Set-up time is negligible. 
(x) It is well known that the production rate of  Stage I is always higher than Stage II. 
(xi) The production system is imperfect, and the inspection time and rework time of  defective products are very 

short, which can be neglected. 
(xii) Inspection cost is negligible. 
(xiii) Transporting time from Stage I to Stage II is ignored. 

 
2.2  Notations (for ith item, i=1, 2, ....., n) 

 
The following notations are employed through this paper as to develop the proposed model. 
 

1i
N  is the total number of  machines for ith item in Stage I. 

2i
N is the total number of  machines for ith item in Stage II. 

1i
P  is the production rate per machine for ith item in Stage I. 
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2i
P  is the production rate per machine for ith item in Stage II, where 

1i
N .

1i
P >

2i
N .

2i
P . 

0i
W  is the maximum shortage amount for ith item. 

1i
W  is the maximum inventory level of  semi-finished product for ith item in Stage I. 

2i
W  is the maximum inventory level of  finished product for ith item in Stage II. 

( )
i

q t  is the on hand inventory of  the item at time t for ith item in Stage I. 

( )
i i

D q  is the stock-dependent demand rate. 

1c i
P = The production cost per unit item per unit time in Stage I. 

2c i
P = The production cost per unit item per unit time in Stage II. 

1h i
C = The holding cost per unit inventory held per unit of  time in Stage I. 

2h i
C = The holding cost per unit inventory held per unit of  time in Stage II. 

3i
C = The set-up cost per production run. 

si
C = The shortage cost per unit per unit time. 

1r i
C = Rework cost per defective item in Stage I. 

2r i
C = Rework cost per defective item in Stage II. 

i
s  = Selling price per unit item. 

1i
d = Percentage of  defective semi-finished product produced, a random variable. 

2i
d = Percentage of  defective finished product produced, a random variable. 

( )
ji

f d = The probability density function of  
ji

d , ( j =1, 2), uniformly distributed with p.d.f  as 

1
( ) , 0

0,

ji ji ji
ji

f d d a
a

otherwise

  


 

i
m = Mark-up of  the selling price per unit item. 

1i
t  = Production starts at that time. (decision variable) 

2i
t = Time at which stock of  inventory starts to accumulate of  finished product at Stage II. 

3i
t = Time when the maximum stock of  inventory of  semi-finished products occur at Stage I. (decision variable)  

4i
t = Time when the stock of  semi-finished products vanish at Stage I and stock of  finished products are maximum at 

Stage II. 

i
T  = Duration of  the cycle. 
B  = The total budget. 
 

3. MATHEMATICAL FORMULATION 

In this model, we have considered the demand rate is dependent on the on-hand inventory i.e. 
( ) ( )

i i i i i
D q q t   , ,

i i
  >0 are constants. 

In the development of  the two stage production model, we assume that there exist allowable shortages and the 
shortages are backlogged and also the cycle starts with shortage at time 0t  . The production run begins at 

1i
t t  in 

both the Stages but production and demand occur simultaneously in Stage II, back-orders are made up to 
2i

t t . 

Inventory items in Stage I begin to accumulate up to 
1i

W  units and inventory items in Stage II begin to accumulate up to 

2i
W  units without deterioration. After 

3i
t t  the production in Stage I stops but the production run is continuous up to 
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4i
t t  in Stage II (cf. Fig. 1). At the end of  production, at 

4i
t t  the inventory in Stage II would be depleted due to 

demand and it vanishes at 
i

t T . This cycle repeats again and again. 

 

 
Figure 1. The graph of  inventory level during time period [ 0,

i
T ] 

 
For semi-finished product in Stage I we have the following result: 

1 1 2 2 3 1 1
( ).( ) .

i i i i i i i
N P N P t t W    

Also 

2 2 4 3 1
.( )

i i i i i
N P t t W  . 

Therefore 

2 2 4 3 1 1 2 2 3 1

1 1 3 1 1 2 2 1
4

2 2

.( ) ( ).( )

( ).
i i i i i i i i i i

i i i i i i i i
i

i i

N P t t N P N P t t

N P t N P N P t
t

N P

   
 

 
                                                   (1) 

 
Now the change of  inventory level in Stage II with respect to time can be described by the following differential 

equations:  
                                              

1

2 2 1 2

2 2 2 4

4

, 0

,( )
( ( )),

( ( )),

i i

i i i i ii

i i i i i i i

i i i i i

t t

N P t t tdq t
N P q t t t tdt

q t t t T



 

 

              

         (2) 

 
with the boundary conditions  (0) 0

i
q  , 

1 0
( )

i i i
q t W ,  

2
( ) 0

i i
q t  , 

4 2
( )

i i i
q t W ,  ( ) 0

i i
q T  . 

Then the solutions of  the differential equations (2) are represented by 
 

 

   

2

4 2 4 4

1

2 2 1 1 1 2

( )2 2
2 4

( ) ( ) ( )2 2
4

, 0

( ).( ) ,

( ) 1 ,

1 . . 1 ,

i i

i i i i i i i

i i

i i i i i i i i

t ti i i
i i i

i

t t t t t ti i i i
i i

i i

t t t

N P t t t t t t

N P
q t e t t t

N P
e e e t t T



  


 



 

 

 

     

                 

                 (3) 

 
At 

2i
t t , 

2
( ) 0

i i
q t  and from (3) we get 
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2 2 1
2

2 2

i i i
i

i i i

N P t
t

N P 



.                                                                           (4) 

 
At 

i
t T , ( ) 0

i i
q T  and from (3) we get 

 4 2( )

2 2

4

( ). 11
ln 1

i i it t

i i i

i i
i i

N P e
T t



 

  
   .                                                (5) 

Now the total holding cost ( )
HOLi

C during the period (0, )
i

T  is given by, 

1 2HOLi HOL i HOL i
C C C                                                                       (6) 
where 

1 1 1 1 2 2 3 1 4 1

1
( ).( ).( )

2HOL i h i i i i i i i i i
C C N P N P t t t t    .  

And 

 

   

4

2 4

4
2

2

4 2 4 4

4 4

2 2

( )2 2
2

( ) ( ) ( )2 2

2 2
2 4 2

( ) ( )

1

1 . . 1

1
( ) (1

i i

i i

i
i i

i

i i
i i i i i i i

i i

t T

HOL i h i i it t

t t ti i i
h i t

i

T Tt t t t t ti i i i

t t
i i

i i i
h i i i

i i

C C q t dt q t dt

N P
C e dt

N P
e e dt e dt

N P
C t t



  



 

 


 

 

     

 
  

  
  


     



  

 



 

 

4 2

4 2

4

( )

( )
( )2 2

42

)

( ){1 }
1 ( ) .

i i i

i i i

i i i

t t

t t
T ti i i i i

i i
ii

e

N P e
e T t




  



 

 
 

           
       


 

 
Total production cost ( )

i
PC  is given by 

 

1 1 1 3 1 2 2 2 4 1
( ) ( )

i i i c i i i i i c i i i
PC N P P t t N P P t t    .                                                   (7) 
 
The sales revenue ( )

i
SR is given by 

                               

2 2 4 1

1 2 2 2 4 1

( )

( ) ( )
i i i i i i

i c i c i i i i i

SR s N P t t

m P P N P t t

 
  

                       (8) 

where 
i

m >1. 
 
The total rework cost ( )

i
RC  is given by 

1 1 1 1 3 1 2 2 2 2 4 1
( ) ( )

i r i i i i i i r i i i i i i
RC C d N P t t C d N P t t    .                                              (9) 
 
The total shortage cost ( )

i
SHC is given by 

1 2

10

2
1 2 1 2 2 2 1 2 2 1

( ) ( )

1 1
( ) ( )( )

2 2

i i

i

t t

i si i it

si i i i i i i i i i i i i

SHC C q t dt q t dt

C t t t N P t t N P t 

 
  

  
                 

 
            (10) 

 
Hence the average profit ( )

i
AP  during the cycle (0, )

i
T  is given by 



92 
Das, Roy and Kar: A Multi-item Inventory Model for Two-stage Production System with Imperfect Processes Using Differential Evolution and Credibility 
Measure 
IJOR Vol. 9, No. 2, 87−99 (2012) 
 

 

4 2

3

1 2 2 2 4 1 1 1 1 3 1

2 2 2 4 1 1 1 1 2 2 3 1 4 1

(2 2
2 4 2

1

1
( ) ( ) ( )

1
( ) ( ).( ).( )

2
1

( ) (1 i i i

i i i HOLi i i i
i

i c i c i i i i i i i c i i i
i

i i c i i i h i i i i i i i i i

t ti i i
h i i i

i i

AP SR PC C RC SHC C
T

m P P N P t t N P P t t
T

N P P t t C N P N P t t t t

N P
C t t e 

 
 

        

    

     


   

 
4 2

4

)

( )
( )2 2

42

1 1 1 1 3 1 2 2 2 2 4 1

2
1 2 1 2 2 2 1 2 2 1

)

( ){1 }
1 ( )

( ) ( )

1 1
( ) ( )( )

2 2

i i i

i i i

t t
T ti i i i i

i i
ii

r i i i i i i r i i i i i i

si i i i i i i i i i i i i

N P e
e T t

C d N P t t C d N P t t

C t t t N P t t N P t


  



 

 
 

         
       

   
      3

.
i

C
             

   (11) 

               
Then the expected value of  the average profit ( )

i
EAP  is given by 

 3

1 2 2 2 4 1 1 1 1 3 1

2 2 2 4 1 1 1 1 2 2 3 1 4 1

(2 2
2 4 2

1

1
( ) ( ) ( )

1
( ) ( ).( ).( )

2
1

( ) (1 i

i i i HOLi i i i
i

i c i c i i i i i i i c i i i
i

i i c i i i h i i i i i i i i i

ti i i
h i i i

i i

EAP E SR PC C RC SHC C
T

m P P N P t t N P P t t
T

N P P t t C N P N P t t t t

N P
C t t e 

 


 
       
  
    

     


   

 

4 2

4 2

4

)

( )
( )2 2

42

1 1 1 1 3 1 2 2 2 2 4 1

2
1 2 1 2 2 2 1

)

( ){1 }
1 ( )

. ( ). ( ) . ( ). ( )

1 1
( ) ( )(

2 2

i i

i i i

i i i

t

t t
T ti i i i i

i i
ii

r i i i i i i r i i i i i i

si i i i i i i i i i

N P e
e T t

C E d N P t t C E d N P t t

C t t t N P t t


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

 



 
 

         
       

   

    
2 2 1 3

) .
i i i i

N P t C
               

  (12) 

 
Hence the total expected value of  the average profit ( )EAP is given by 

1

n

i
i

EAP EAP


   (13) 

 
4. CREDIBILITY MEASURE 

To construct the inventory model for two-stage production system in fuzzy environment, we shall first introduce some 
knowledge of  credibility theory. Credibility theory was initialized by Liu and Liu (2002). If    is a fuzzy variable with 

membership function ( )x , then for any set A of   , the possibility measure of  fuzzy event { A  } is defined as 

{ } ( ).
x A

Pos A Sup x 


 


  

The necessity of  this fuzzy event is defined as the impossibility of  the opposite event. That is 
{ } 1 ( ).

cx A

Nec A Sup x 


  


  

The credibility measure of  { A  } is defined as the average of  its possibility and necessity measure. Therefore 

 1
{ } { } { }

2
Cr A Pos A Nec A         , for any 2 ,A   

where 2 is the power set of   . 
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It is easy to check that Cr  satisfies the following conditions: 
(i) ( ) 0Cr    and ( ) 1Cr   ; 

(ii) ( ) ( )Cr Cr    whenever , 2  

  and    ; 

Thus, Cr  is also a fuzzy measure defined on ( ,2 ) . Besides, Cr is self  dual, i.e., 

( ) 1 ( )cCr A Cr  
 for any  2  . 

Credibility measure is defined as the following form: 
 

( ) [ ( ) (1 ) ( )]Cr Pos Nec          

 
[cf. Liu and Liu (2002)] for any 2  and confidence level  , 0 1  . It also satisfies the above conditions. 
 

 
Figure 2. Membership function of  a TrFN 

                                                         
Trapezoidal Fuzzy Number: Let A  is the trapezoidal fuzzy number (TrFN) with the membership function ( )

A
x



, 

a continuous mapping : ( ) : [0,1]
A

x  


 

 

1

1
1 2

2 1

2 3

4
3 4

4 3

4

0

( ) 1

0

A

for x a

x a
for a x a

a a
x for a x a

a x
for a x a

a a
for a x



                



    

3

4
3 4

4 3

4

1

( )

0

if r a

a r
Pos A r if a r a

a a
if r a

       

  

 

1

2
1 2

2 1

2

1

( )

0

if r a

a r
Nec A r if a r a

a a
if r a

       

  
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The credibility measure for TrFN can be define as 

1

2 1

1 2
2 1 2 1

2 3

4

3 4
4 3

4

1

(1 )

( )

( )

0

if r a

a a r
if a r a

a a a a
Cr A r if a r a

a r
if a r a

a a
if r a

 




                

  

 

1

1

1 2
2 1

2 3

4 3

3 4
4 3

4

0

( )

( )

(1 )

1

if r a

r a
if a r a

a a
Cr A r if a r a

a a r
if a r a

a a
if r a




 

               

  

 
Based on the credibility measure, Liu and Liu (2002) presented the expected value operator of  a fuzzy variable as 

follows: 
Let X  be a normalized fuzzy variable, then the expected value of  the fuzzy variable X  is defined by 

0

0

[ ] ( ) ( ) .E X Cr X r dr Cr X r dr




          (14) 

When the right side of  (14) is of  form  , the expected value is not defined. Also, the expected value operation 

has been proved to be linear for bounded fuzzy variables, i.e., for any two bounded fuzzy variables X and Y , we have  
[ ] [ ] [ ]E aX bY aE X bE Y       for any real numbers a  and b . 

The expected value of  trapezoidal fuzzy variable 
1 2 3 4

[ , , , ], 0 1X a a a a      is defined as 

1 2 3 4

1
[ ] (1 )( ) ( )

2
E X a a a a        
 . 

 
5. PROBLEM FORMULATION 

5.1  Stochastic Model 
 
So, the equivalent deterministic form of  the above stochastic model with budget constraint can be expressed as,  

1 3

1 1 2 2

1

( , )

,

( )

[ ] .

i i

i i i i i
n

i i
i

Maximize EAP t t

subject to

N P N P D q

PC RC B


 

 

   (15) 

 
5.2  Fuzzy-Stochastic Model 

 
As in this model, inventory costs 

1 2 3
, ,

h i h i i
C C C  and available budget B are imprecise, 

1 2
,

h i h i
C C and 

3i
C  in (12) 

are replaced by 
1 2 3
, ,

h i h i i
C C C  and B  in constraint of  (15) is replaced by B  and the expected value of  the average 

profit is represented by EAP . 
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Credibility Approach (CrA) 
In this paper we consider 

1 2 3
, ,

h i h i i
C C C  and B  as trapezoidal fuzzy number i.e. 

1 1 1 1 2 1 3 1 4
( , , , )

h i h i h i h i h i
C C C C C , 

2 2 1 2 2 2 3 2 4
( , , , )

h i h i h i h i h i
C C C C C , 

3 3 1 3 2 3 3 3 4
( , , , )

i i i i i
C C C C C and 

1 2 3 4
( , , , )B B B B B . Since optimization of  a fuzzy 

objective is not well defined, so instead of  EAP  one can optimize its equivalent optimistic and pessimistic return as stated 
in section 4. So, the problem can be represented in following way. 

When decision maker likes to optimize the optimistic and pessimistic equivalent of  EAP  with 
1 2 3
, ,

h i h i i
C C C    and 

B  then, the problem reduces to, 

1 3

1 1 2 2

1

( , )

,

( )

[ ] ,

i i

i i i i i
n

i i
i

Maximize EAP t t

subject to

N P N P D q

PC RC B


 

 





   (16) 

 
where 

1

n

i
i

EAP EAP


  . 





1 2 2 2 4 1 1 1 1 3 1

2 2 2 4 1 1 1 1 2 1 3 1 4 1 1

2 2 3 1 4 1 2 1 2 2

2 2
2 3 2 4

1
( ) ( ) ( )

1
( ) {(1 )( ) ( )}.(

4
1

).( ).( ) (1 )( )
2

( ) .

i i c i c i i i i i i i c i i i
i

i i c i i i h i h i h i h i i i

i i i i i i h i h i

i i i
h i h i

EAP m P P N P t t N P P t t
T

N P P t t C C C C N P

N P t t t t C C

N P
C C

 






    

      

     


 



 

4 2

4 2

4

( )

4 2

( )
( )2 2

42

1 1 1 1 3 1 2 2 2 2 4 1

2
1 2

1
( ) (1 )

( ){1 }
1 ( )

. ( ). ( ) . ( ). ( )

1
(

2

i i i

i i i

i i i

t t

i i
i i

t t
T ti i i i i

i i
ii

r i i i i i i r i i i i i i

si i i i

t t e

N P e
e T t

C E d N P t t C E d N P t t

C t t t






 

  




 

 
 

            
       

   

  
1 2 2 2 1 2 2 1

3 1 3 2 3 3 3 4

1
) ( )( )

2
1

{(1 )( ) ( )},
2

i i i i i i i i i

i i i i

N P t t N P t

C C C C



 

             

    

  (17) 

 
and 

1 2 3 4

1
{(1 )( ) ( )}, 0 1.

2
B B B B B          

 
6. SOLUTION PROCEDURE 

6.1.  Differential Evolution (DE) 
 
Many heuristic algorithms have been proposed for global optimization of  nonlinear non-convex and non-differentiable 

functions. These methods are more flexible than classical one as they do not require differentiability, continuity or other 
restrictive properties which are usually required for the objective function to be optimized. Some of  such methods are 
genetic algorithm, evolutionary strategies, colony optimization, particle swarm optimization and differential evolution (DE). 
Differential Evolution (DE)[cf. Storn and Price (1997)] is a novel population based stochastic direct search optimization 
algorithm that is fairly fast and reasonably robust. DE resembles the structure of  an evolutionary algorithm but differs from 
classical evolutionary algorithms in its generation of  new candidate solutions and by its use of  a `greedy' selection scheme. 
The key difference is that mutation in DE algorithm is an arithmetic combination of  individuals whereas in traditional 
evolutionary algorithms, it is the result of  small perturbations to the genes of  an individual. Moreover, in DE, the trial 
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solutions are generated by adding weighted difference vectors to the target vector followed by a recombination (or crossover) 
step to produce an offspring which is only accepted if  it improves the fitness of  the parent individual. 

DE automatically adapts the mutation increments (i.e. search step) to the best value based on the stage of  the 
evolutionary process. In GA Mutation is caused by small alterations of  genes, whereas in DE Mutation is provided by 
arithmetical combinations of  individuals. The core of  this operation is the formation of  a difference vector which makes 
mutate an individual. 

The basic operators of  DE are described in the following sections: 
 

Initial Population 
An N dimension parameter optimization problem can be represented as an N-dimensional vector 

   , 1, 2, ,
, ,........., .

T

i j i i i N i
x x x x x   

If  there is no preliminary knowledge about the optimization, the first population solutions can be generated randomly 
as: 

, ,( ) ,( ) ,( )
[ ]

i G i L i i H i L
x x R x x   , 

where 
,( )i L

x  and 
,( )i H

x  are the lower and higher boundaries of  the vector 
i

x  and (0,1),
i

R  drawn uniformly for each 

i . 
 

Mutation 
Mutation operator is employed to expand the search space. By the combination of  vectors randomly chosen from the 

current population at generation G, a mutant vector 
, 1i G

v 
 is generated for each target vector 

,i G
x  as 

1 2 3, 1 , , ,
( ),

i G r G r G r G
v x F x x       (18) 

where 
1 2

, ,i r r and 
3

r are reciprocally different random integers less than or equal to population size of  solution vectors. 

(0,2)F   is a real constant positive weighting factor which controls the amplification of  the differential variation. 

 
Crossover 

To increase the diversity of  the population, DE utilizes crossover operation that integrates successful solutions from 
the previous generation. 

The trial vector 
, 1i G

u   is found from its parents 
,i G

x  and 
, 1i G

v   using the following crossover rule: 

, 1

, 1
,

,j j
i G R ij
j ji G
i G R i

v if R C or j I
u

x if R C and j I




     
   (19) 

where 1,2,........,i N  and 
R

C  is crossover parameter. 
i

I  is an integer randomly chosen with replacement from the 

set ,I  i.e., {1,2,......., }
i

I I N  ;  the superscript j  represents the thj  component of  respective vectors; 

(0,1),
j

R   drawn uniformly for each .j  

 
Selection 

To decide whether or not to include the trial vector in the population of  the next generation 1,G   it is compared 
with the target vector using greedy criterion. 

If  the value of  the objective function for the trial vector 
, 1i G

u   is better than or equal to the value obtained for the 

target vector 
,i G

x ; the latter is replaced by the former otherwise the latter is retained in the population of  the next 

generation.  

, 1 , 1 ,

, 1
,

( ) ( )
i G i G i G

i G
i G

u if f u f x
x

x otherwise
 



  
  (20) 

where 1,2,........ . ,i pop size  :f    (  is assumed to be the feasible search space of  the problem) is a continuous 
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real valued function and x   is continuous variable vector with domain .n  
 
DE Procedure:     

Step-1:   Initialize control parameters: 
Set the values of  the DE control parameters ( , , ).

R
N F C  

Step-2:   Determine the initial population 
i

x  

 1, 2, 3, ,
, , ,.............

T

i i i i N i
x x x x x  

where the components of  each point 
,

( 1,2,........, )
j i

x j N  are floating point numbers randomly chosen within the 

range (0, 1). 
Step-3:   Generate the solutions of  the next population  
for i=1 to N do 
Mutation phase: 
Generate a mutant vector 

, 1i G
v   using equation (18). 

Crossover phase: 
Generate a trial vector 

, 1i G
u 

 by its parents 
,i G

x  and 
, 1i G

v 
using equation (19). 

Accepted phase: 
Acceptance of  the total expected average profit (EAP) function is occurred with the equation (20). 
Endfor 
 
Step-4:  Population statistics determine the population best solution if  termination condition is not satisfied then go 

to step 3. 
Return 
The models (15) and (16) are solved by using differential evolution algorithm approach and credibility measure, 

discussed in subsection-6.1 and section-4 respectively. Our DE consists of  some parameters, the size N of  the population, 
scaling parameter F in its mutation scheme (18) and the controlling parameter 

R
C  in the crossover scheme (19). Here we 

consider 100N  , 0.5
R

C  and 0.5F  . 
 

7. NUMERICAL ILLUSTRATION 

In this section, both the stochastic model and fuzzy-stochastic model are illustrated and solve by DE algorithm with a 
numerical example. 
 
7.1  Stochastic Model 
 

To illustrate the proposed two stage stochastic production inventory model, let us consider the total budget 
50000B  and the input data for following two items are shown in Table 1. 
 

Table 1. Some data for above inventory model 
Item 

3i
C  

1h i
C

 
2h i

C

 
i

  
1i

N  
2i

N  
si

C  
1r i

C  
2r i

C

 
i

  
i

m  
1i

P  
2i

P  
1c i

P  
2c i

P  

Item-1 25 2.5 3.0 150 7 5 1.2 1.2 1.1 .35 1.93 310 250 3.5 2.5 
Item-2 24 2.3 2.8 140 5 5 1.1 1.15 1.05 .33 1.91 290 245 3.4 2.3 

 
Table 2. Expected value of  defective items 

Item      
1i

       
2i

      
1

( )
i

E d      
2

( )
i

E d  

Item-1 0.04 0.05 0.02 0.025 
Item-2 0.045 0.055 0.0225 0.0275 

 
The computational result is shown in Table 3. 
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Table 3. Optimal solutions for illustrated example with allowable shortage 

11
t  

31
t  

12
t  

32
t  EAP  

1.764 2.030 1.792 2.048 1271.6718 
 

Sensitivity Analysis: 
For the given numerical example mentioned in section 7.1, sensitivity analyses are performed to study the effect of  

changes of  different values of  the demand parameters
1

 , 
2

 , 
1

  and 
2

  on maximum expected average profit of  the 

system. It is observed that for different values of  
1

  as 
1

  increases when 
2

  and 
2

  are fixed, expected value of  the 

average profit increases and also for different values of  
2

  as 
2

  increases when 
1

  and 
1

  are fixed, expected value 
of  the average profit also increases. All these observations agree with the reality. 

Tables 4 and 5 show that sensitivity analysis of  the demand parameter 
1

  for different values of  
1

  when 
2

 = 

140 and
2

 = 0.33 and sensitivity analysis of  the demand parameter 
2

  for different values of  
2

  when 
1

 = 150 and 

1
 = 0.35 respectively. 

 
   Table 4. Sensitivity analysis for 

1
      Table 5. Sensitivity analysis for 

2
  

 
1

   
1

   
11
t   

31
t  EAP    

2
   

2
   

12
t   

32
t  EAP  

 
100 

0.30 1.764 2.030 970.1006   
90 

0.30 1.872 2.048 1042.9662 
0.35 1.764 2.030 996.0732  0.33 1.884 2.063 1043.7886 
0.40 1.764 2.030 1021.8962  0.36 1.876 2.063 1045.2946 

 
150 

0.30 1.764 2.030 1258.4014   
140 

0.30 1.798 2.048 1270.1179 
0.35 1.764 2.030 1271.6718  0.33 1.792 2.048 1271.6718 
0.40 1.764 2.030 1285.9692  0.36 1.792 2.063 1273.1778 

 
200 

0.30 1.786 2.132 1483.8086   
190 

0.30 1.732 2.063 1503.4259 
0.35 1.786 2.132 1497.2811  0.33 1.688 2.018 1507.5662 
0.40 1.872 2.237 1511.7812  0.36 1.688 2.048 1508.7366 

 
7.2  Fuzzy-Stochastic Model 

 
To illustrate the two stage fuzzy-stochastic production inventory model numerically, the input data are taken as follows. 

11
(2.2, 2.4, 2.5, 2.75),

h
C   

12
(2.1, 2.3, 2.5, 2.75),

h
C   

21
(2.5, 2.75, 3.25, 3.7),

h
C   

22
(2.6, 2.8, 3.0, 3.5),

h
C   

31
(20, 25, 29, 35)C   and 

32
(20, 24, 29, 34)C  , 

(41000, 45000, 50000, 54000)B   and the other data are same as in stochastic model. 

Table 6 shows the results for different values of  the confidence level  . 
 

Table 6. Results using credibility approach 
           

11
t      

31
t      

12
t      

32
t    EAP  

0.0 1.764 2.030 1.748 2.018 1297.1885 
0.1 1.764 2.030 1.790 2.048 1289.4669 
0.2 1.764 2.030 1.790 2.048 1283.7149 
0.3 1.764 2.030 1.798 2.063 1277.4276 
0.4 1.764 2.030 1.760 2.018 1273.6228 
0.5 1.764 2.030 1.760 2.018 1267.8199 
0.6 1.764 2.030 1.802 2.048 1260.1317 
0.7 1.764 2.030 1.802 2.048 1254.5364 
0.8 1.764 2.030 1.806 2.048 1248.5729 
0.9 1.764 2.030 1.810 2.063 1242.8642 
1.0 1.872 2.153 1.876 2.162 1232.5559 
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8. CONCLUSION AND FUTURE SCOPE 

In this study a two-stage production inventory model for multi-item with budgetary constraint has been presented. 
Here we have analyzed an inventory system where the demand can be satisfied by the products of  stage II production, 
assuming that imperfect products are reworked. Here it is also assumed that defective items are produced in both the stages 
in a random fashion. For fuzzy-stochastic model, holding cost, setup cost and total available budget are imprecise. For the 
first time, random production of  defective units with rework have considered in a two-stage production system. Credibility 
theory approach has been introduced for an imprecise inventory system. A differential evolution (DE) algorithm has been 
designed for numerical illustration of  the proposed model. 

Finally, a future study will incorporate more realistic assumptions in the proposed model, such as variable production 
rate, uncertain/imprecise nature of  demand finite or random planning horizon.In this section, both the stochastic model 
and fuzzy-stochastic model are illustrated and solve by DE algorithm with a numerical example. 
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