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Abstract  In this study, we have derived an entropy index called the adaptive entropy estimator (AEE) which welds the 
relevant ingredients of  the plethora of  transitions in a manpower system into a coherent framework flexible enough to 
estimate the stability of  a manpower system. Some interesting results on the maximum and minimum entropy conditions for 
graded manpower systems are obtained from the AEE. Using dataset in a university setting, the AEE is found to give a 
better picture of  stability in the system than the commonly used McClean/Abodunde-type entropy as the inference from 
the former agrees reasonably well with the chi-square decision.  
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1. INTRODUCTION 

Manpower systems are well-known hierarchical systems in literature that consist of  individual stocks and flows 
(Agrafiotis 1984). The flows in a manpower system include promotion, recruitment and wastage. As a consequence, a 
unified framework is employed in the study of  manpower systems. In modelling manpower systems, most authors 
(Bartholomew et al. 1991; McClean et al. 1992) rely on Markov chain methodologies as an analytic tool to unify the states of  
the system with the axiomatic foundation that there is a one-stage dependence of  events, i.e. each event depends 
immediately on the preceding event, but not on the other prior events. It is essential in manpower planning to be able to 
monitor stability of  the transition process of  individuals (McClean, 1986). The commonly used stability index is the 
McClean/Abodunde-type entropy (McClean and Abodunde 1978). Basically, the term entropy refers to a measure of  the 
degree of  disorderliness, flexibility, uncertainty or randomness in a system (Tirtiroglu 2005). The use of  entropy as a 
measure of  stability in graded manpower system quantifies the degree of  uniformity in accessing a grade from other grades 
in the system. From the way the concept of  entropy is used in McClean and Abodunde (1978), maximum entropy indicates 
a uniform distribution of  experience, i.e. the system is in a ‘steady-state’, while zero entropy occurs when all members of  
staff  are recruits and always leave after their first years’ service; lower entropy is an indication of  poor stability, and higher 
entropy implies a high-level of  stability. The use of  entropy-theoretic methodologies is not restricted to manpower systems 
alone as they are increasingly been used in various fields. Details can be found in the works of  Horowitz (1970), Pulliainen 
(1970), Thomas (1979), Dinkel and Kochenberger (1979), Freund and Saxena (1984), Rodrigues (1989), Paris and Howitt 
(1998), Ebrahimi (2000), Mussard et al. (2003), Tirtiroglu (2005), Osagiede and Ekhosuehi (2007), Ekhosuehi and Osagiede 
2010) and Lee et al. (2011). However, we shall primarily limit our scope of  study to the use of  entropy in manpower systems.  

This study is designed to develop an adaptive entropy estimator for hierarchical manpower systems based on the 
imbedding of  discrete-time Markov chains (Tsaklidis 1994). Specifically, we solve the following problem:  

P: Resolve the Boltzmann entropy  
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subject to the imbedded flow pattern 
^

*( ) ( ) ( ), 1,2,..., ; 1,2,...,
ij i ij

n t n t t i k j k   .   

By so doing, we are able to estimate the entropy value from the plethora of  transitions in the system. The following 
symbols and nomenclature are used, inter alia, in this paper: 

B
k : Boltzmann constant. 
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( )
ij

n t : the number of  individuals who move from grade i  to grade j  in period t . 

( )
ij

p t : the probability of  individuals’ flow from grade i  to grade j  in period t . 

0
( )

i
p t : the probability of  individuals leaving grade i  in period t . 
k : the maximum grade in the system. 

i
p  : the probability that a member of  staff  is in tenure class i . 

σ ** ( ) ( ( ))
ij

t t : the imbedded Markov chain with elements *
0 0

( ) ( ) ( ) ( )
ij ij i j

t p t p t p t   . 

 
2. THE USE OF ENTROPY IN MANPOWER CONTEXT 

In modelling the state-transition process of  a manpower system using a Markov chain model, it is essential to measure 
the stability of  the process and thus evade possible trauma. The commonly used measure of  stability is the 
McClean/Abodunde-type entropy. McClean and Abodunde (1978) introduced the entropy stability measure for manpower 
systems wherein one of  the problems associated with Shannon entropy (which is the absence of  a fixed maximum value) is 
resolved. The McClean/Abodunde-type entropy is obtained for a steady-state manpower system by modifying the basic 
Shannon entropy as  

1
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i i
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p p
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 .                                                                         (1) 

Steady-state manpower systems had earlier been discussed in McClean (1977). Tyler (1984) reported that the McClean’s 
steady-state model is a method for smoothing out the disturbing effects of  short-term fluctuations in manpower systems. 
McClean and Abodunde (1978) used the transition probabilities generated from the McClean’s steady-state model as inputs 
to the formula in equation (1) so as to measure the stability of  the length of  service in a system. The entropy measure in 
equation (1), denoted by H , lies in the closed interval  0,1    . 0H   when 

1
1p   and 

2 3
... 0

k
p p p     i.e. 

when all members of  staff  are recruits and always leave after their first years’ service. The upper bound of  entropy is 
achieved when there is an equal distribution of  experience throughout the state, i.e. H =1 only when 

1 2
... 1

k
p p p k    . For intermediate values, the entropy measures the degree of  experience which will be present in 

steady-state. The work of  McClean and Abodunde (1978) was extended by Vassiliou (1984) by finding the probability of  a 
person to be in a specific length of  service class as t   ; and was refined by McClean (1986) for a manpower system 
with continuous-time tenure profile. The McClean and Abodunde’s entropy measure is rooted on the McClean’s steady-state 
model and Shannon entropy formula. Tyler (1983) had criticized the McClean’s steady-state model that it makes no mention 
of  the size of  the system. According to Ebrahimi et al. (2010), the information methodologies are often developed in 
isolation, i.e. a particular measure is used without consideration of  the larger picture. Since the McClean and Abodunde’s 
measure is based on Shannon (information-theoretic) entropy measure, the results obtained from the McClean and 
Abodunde’s measure for manpower systems is incomprehensive. Omosigho and Osagiede (1999) applied 
McClean/Abodunde-type entropy to an organisation by assuming that the wastage rate in the system satisfies the 
log-normal model of  Chu and Lin (1994). The entropy measures used by authors such as Omosigho and Osagiede (1999) 
and Vassiliou (1984) suffer from the same shortcoming of  concentrating on one aspect of  transitions within the manpower 
system which is primarily the survival of  individuals from one tenure class to another within the system, while neglecting 
other transitions such as recruitment and wastage flows. This gives a partial picture of  the behaviour of  the system and a 
limited interpretation of  the results. 

Apart from the use of  statistical entropy in manpower systems, the thermodynamic entropy has also been applied. 
Tyler (1989) developed an entropy measure for manpower systems based on the concepts of  thermodynamics wherein the 
size of  the manpower system is analogous to the absolute temperature. By considering the size of  the tenure class in the 
McClean’s steady-state manpower model, Tyler (1989) evaluated the entropy of  a manpower system from the Boltzmann’s 
formula as well as the internal energy of  the manpower system given as 

log
B

H
S

c
  ,                                                                                 (2)  

where 
B

H  is the Boltzmann’s formula expressed as 
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   , is the McCleans’ steady-state number of  members of  the population belonging to 

each tenure class c , c  is the number of  tenure classes, 
1

c

i
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N N


   is the total size of  the population, and 
i

p  is the 

probability of  surviving from one tenure class i  to tenure class 1i  . The thermodynamic entropy measure proposed by 
Tyler (1989) has a critical limitation emanating from the assumption that size of  the manpower system is analogous to the 
absolute temperature. This assumption is unrealistic as it has no theoretical basis. More so, the mathematical complexities 
inherent in the application of  the entropy measure limit its use only to the mathematically equipped researchers.  

 
3. THE ADAPTIVE ENTROPY ESTIMATOR FOR MANPOWER SYSTEMS 

In order to quantify the degree of  stability in the modelled system, we solve problem P. The problem P is a 
modification of  the Boltzmann distribution of  energy (Kneen et al. 1972; and Toda et al. 1978) so as to capture the possible 
number of  ways of  selecting individuals moving from one state i  to another state j   in period t  of  a k  state space 
system as 
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For convenience, we suppress the time variable t  in equation (4). Consider the contribution of  state i  to entropy 
of  the system, denoted as 

i
S , i.e.  
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By performing some algebra with the factorial, it is easy to see that  
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Applying the Euler summation formula (see Lang 1993), we have for ( ) log
e

f k k  :      
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where  t 
  

 is the largest integer  t , which has unit jumps at the integers  1, 2, 3, ,n . By considering the function 
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where the twiddle sign ~ means that 
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By substituting the constraint 
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The entropy therefore for the entire system is * *
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Using the idea of  McClean and Abodunde (1978), we have 
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We refer to equation (11) as the adaptive entropy estimator (AEE) for a k  state space system. AEE is a refinement 
of  the entropy rate for Markov processes in Ciuperca and Girardin (2005) as the steady-state probabilities are now being 

replaced by 
( )

( ) log
i

e

n t

N t k
. 

We make propositions about the upper and lower bounds of  the AEE and provide the required proofs. 
 

Proposition 1:  At maximum entropy, an individual can access every state of  the system with equal probability. 

 

Proof 
We shall maximise the constrained discrete countable contribution of  state i  to entropy as follows:  
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Applying the Lagrangian method, we obtain 
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From the constraint in problem (12) and the results obtained so far, we conclude that an individual can reach every 
state of  the system with equal probability when entropy is at its maximum. 

 
Proposition 2:  In a k  state space manpower system which strives for long-term survival, minimum entropy occurs when the flows are 

stagnated (i.e., ( ) 1
ii

p t  ) and no wastage occurs. 

 

Proof 

  We prove this proposition by considering the imbedded Markov chain, σ ** ( ) ( ( ))
ij

t t  (see Tsaklidis 1994). 
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p t  , for all i  and j , which is 

unrealistic as manpower system strives to attain long-term survival. If  
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i
p t   and

0
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i
p t  , then wastage occurs so 

that recruitment is done. This is a contradiction. Hence, ( ) 1
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4. UTILITY OF THE AEE 

In this section, we demonstrate the utility of  the AEE with Matlab R2007b. We achieve this by collating and tabulating 
enrolment data from the Senate approved results for each session of  a part-time undergraduate programme in the 
University of  Benin, Nigeria as flows. The sessions from 2003/2004 to 2008/2009 are chosen for data (Table I). From 
Table I, there are new entrants only into level 1 and level 2 of  the programme and some figures are in parenthesis. The 
figures in parenthesis denote the number of  graduates. 
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Table 1. Enrolment data from 2003/2004-2008/2009 at the end of  each session 

20
03

/2
00

4 
 S

es
si

on
 

/i j  1 2 3 4 5 6 
0i

n  ( )
i

n t  

0 j
n  112 4 0 0 0 0 __ 116 

1 0 112 0 0 0 0 0 112 
2 0 0 53 0 0 0 0 53 
3 0 0 0 56 0 0 0 56 
4 0 0 0 0 30 0 0 30 
5 0 0 0 0 0 35 0 35 
6 0 0 0 0 0 8 10 (10) 18 

20
04

/2
00

5 
se

ss
io

n  

0 j
n  110 __ 0 0 0 0 __ 110 

1 0 106 0 0 0 0 4 110 
2 0 0 90 0 0 0 22 112 
3 0 0 0 45 0 0 8 53 
4 0 0 0 0 48 0 8 56 
5 0 0 0 0 0 26 4 30 
6 0 0 0 0 0 8 35 (28) 43 

20
05

/2
00

6 
se

ss
io

n  0 j
n  236 __ 0 0 0 0 __ 236 

1 0 234 0 0 0 0 2 236 
2 0 0 78 0 0 0 28 106 
3 0 0 0 87 0 0 3 90 
4 0 0 0 0 45 0 0 45 
5 0 0 0 0 0 43 5 48 
6 0 0 0 0 0 13 21 (19) 34 

20
06

/2
00

7 
se

ss
io

n  

0 j
n  353 __ 0 0 0 0 __ 353 

1 0 346 0 0 0 0 7 353 
2 0 0 226 0 0 0 8 234 
3 0 0 0 78 0 0 0 78 
4 0 0 0 0 87 0 0 87 
5 0 0 0 0 0 43 2 45 
6 0 0 0 0 0 20 36 (27) 56 

20
07

/2
00

8 
se

ss
io

n  0 j
n  471 180 0 0 0 0 __ 651 

1 0 470 0 0 0 0 1 471 
2 0 0 404 0 0 0 2 406 
3 0 0 0 211 0 0 15 226 
4 0 0 0 0 78 0 0 78 
5 0 0 0 0 0 80 7 87 
6 0 0 0 0 0 35 28 (27) 63 

20
08

/2
00

9 
se

ss
io

n  

0 j
n  181 22 0 0 0 0 __ 203 

1 0 179 0 0 0 0 2 181 
2 0 0 489 0 0 0 3 492 
3 0 0 0 397 0 0 7 404 
4 0 0 0 0 205 0 6 211 
5 0 0 0 0 0 67 11 78 
6 0 0 0 0 0 44 71 (65) 115 

Source: Approved Results by Senate of  University of  Benin Nigeria for B.Sc. Statistics with Computer Science, 
Department of  Mathematics. 

 
Working from Table I, we code the sessions 2003 / 2004t  , ,2008 / 2009  as 1, ,6t   , and compute the 

imbedded transition matrix for each session of  the system. The block structure of  transition matrices is made up of  two 
matrices the direct transition between levels, and the part of  wastage flow that goes back into the system as new entrants. 
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The main diagonal elements of  the matrices are either zero or relatively small, while the upper off-diagonal elements 
(‘promotion’ probabilities) are large. The reasons for this are that there is no repetition in the system except in the final year, 
and there is a normal progression to the next higher level while the few students not promoted drop-out of  the programme. 
Entries in columns 1 and 2 represent the part of  wastage flow that goes back into the system as new entrants. Zero entries 
represent absence of  transition.  

Next, we calculate the entropy values for each session using the AEE and the McClean/Abodunde’s formula. The 
results are depicted in fig. 1. From fig. 1, the results of  the McClean/Abodunde’s formula indicate a very high stability for 
the data.  

 

 
Figure 1. Graph of  the AEE and Mc CleanAbodunde entropy values for the school data 

 
The implication of  this result is that the part-time programme is near a steady-state so that the transition processes 

tend to be uniform and stationary. This is misleading as the transition matrices are not only sparse, but they show a high 
progression rates with variable degrees of  fluctuations. To see this, we test the constancy of  the transition matrices using the 
chi-square test statistic as in Zanakis and Maret (1980). We obtain the calculated chi-square value as 393.4455. Since the 
number of  time periods is six sessions for the six-year-graded system, the number of  degrees of  freedom for the test 
statistic is 150. This value (150 degrees of  freedom) is large so the critical value for   percentile is computed using 

 2 21
( 2 1 ) , 30

2
z k k      ,  

where k  is the number of  degrees of  freedom and z  is the corresponding percentile of  the standard normal 

distribution (Lindgren, 1993). We obtain the critical value at the 5% significance level as 2
0.95

179. 2958  . The calculated 

chi-square value is greater than the critical value, so we conclude that the transition matrix is not stationary over the period 
of  investigation at 5% significance level. In this light, the system is yet to achieve stability. This is a contradiction to the 
result of  McClean/Abodunde entropy formula. However, the AEE values from fig. 1 indicate low stability in the level of  
accessibility during the period as the values are less than 0.5. From the foregoing, the AEE gives a better picture of  the 
system in that the inference from it agrees well with the chi-square decision. 

 
5. CONCLUSION 

In this paper, we have considered the stability problem for the individual stocks and flows in graded manpower systems. 
The main contributions of  this study include the construction of  an adaptive entropy estimator (AEE) for manpower 
systems and the additional information provided on the conditions for zero entropy in graded systems (Proposition 2). 
Unlike the traditional McClean/Abodunde-type entropy measure which concentrates on one aspect of  the transition 
process, the AEE explores various aspects of  transitions that cannot be ignored in any realistic description of  how a 
hierarchical manpower system works. In the numerical illustration, it is found that the AEE gives a better picture of  the 
system than the McClean/Abodunde-type entropy as the inference from it agrees well with the chi-square decision. 
Although a case has been studied in this paper, we are optimistic that more interesting features of  the AEE will be obtained 
when it is applied to large manpower systems. Notwithstanding the AEE has a fundamental limitation arising from the 
underlying assumption of  the imbedding formulation. The limitation is that the AEE is only applicable to systems where 
recruitment is done to replace wastage and to achieve the desired growth. 
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