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Abstract  This paper characterizes the trailing-stop strategy for stock trading and provides a simulation model to evaluate 
its validity. Based on a discrete time computational model, we perform probabilistic analyses of  the risks, rewards and 
trade-offs of  such a trading strategy. Numerical examples using real data from the S&P 500 and the Dow Jones Industrial 
Average indicate that the trailing-stop strategy may be dominated by the portfolio containing risk-free assets and stocks, if  
prices are assumed to follow geometric Brownian motion.  
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1. INTRODUCTION 

After entering the market, the appropriate time of  exiting is a critical decision by traders. Many researchers advocate 
the trailing-stop strategy in which the exit price is predetermined, and traders exit the market when the market price drops 
to a stop price lower than the corresponding stage price when price fluctuates (see Iglehart and Stone (1983), Glynn and 
Iglehart (1995), Acar and Satchell (2002)). Glynn and Iglehart (1995) studied the trailing stop strategy in discrete and 
continuous-time cases. They assumed that, in the discrete case, the price process is a geometric random walk generated by 
binomial or double exponential random variables, while in the continuous case the price process follows geometric 
Brownian motion. They discussed the properties of  the optimal strategy, such as the mean and variation of  the duration 
from the current price to stop. Following their work, many different methods have been used to identify the optimal 
trailing-stop strategy. Yin et al. (2008) developed stochastic approximation algorithms to estimate the optimal trailing stop 
percentage in a continuous case. They verified the derived optimal trailing-stop strategy by looking at real data and 
comparing it with a moving-average strategy. They found that the average return from a trailing-stop was 71.45%, while the 
average return from a moving average was only 11.45%; trailing stop therefore outperformed significantly. Abramov et al. 
(2008) described the features of  an optimal trailing-stop strategy in a discrete setup by assuming a binomial distribution of  
prices. They analyzed the relations among important statistics under certain conditions and claimed that there may not exist 
a trading strategy generating positive discounted gains. 

In this paper we are trying to examine trailing stop strategies by following the steps advocated by Warburton and 
Zhang (2006). In their paper, the authors illustrated an investment strategy from a powerful theoretic computational model, 
and showed how the terminal distribution can be used to compute a variety of  probabilistic risk and reward measures of  
interest to an investor. We not only enrich the methods of  trailing-stop strategies, but also provide a real-data-based 
simulation of  our theoretic model to locate the optimal trailing-stop strategy, and thus to verify its validity. 

We consider discrete time wandering processes that move with a “shape” whose form is given by a finite subset    
of  the integer grid points in the plane, called a “basic state space” or “virtual state space”. Each grid point can be denoted 
by ( , )x t . The process starts out at an initial point in   and moves with time until it hits a “target state” or a “termination 
state”. As soon as it hits a termination state, the process terminates. As soon as it hits a target state, the process begins again 
in the following sense: if  it hits target state ( , )x t , then the process can now move in the translated region ( , )x t  ; if  it 
hits a termination state in the translated region, the process stops; if  it hits a target state ( , )y s  in the translated region, the 
process restarts. It now can move in the region ( , ) ( , )x t y s  , etc. A wandering process is completely determined by 
the probability distribution of  the next-step states and the  . An example of    shown in Figure 1 has a trinomial 
probability distribution of  the next-step states and an   with a horizontal upper target state boundary denoted by K , a 
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horizontal lower termination state boundary denoted by L , and a vertical termination boundary denoted by T .1
 

 

 
Figure 1. Possible price movements for a case of T =7, K =3, L =2 

 
When the process starts ( 1n  ), there is only one initial point thus one virtual state space. Since all points on its 

upper boundary could be the initial points for the next cycle ( 2n  ), there are multiple virtual state spaces and they are 
partially overlapped. Therefore Figure 2 shows the wandering process generated by the   depicted in Figure 1. 

 
 

 
 

Figure 2. Real state space for a horizon of  5T  
 
Our study on the wandering process is motivated by evaluating “trailing-stop” strategies used in stock trading. In these 

strategies, a stop-loss order is periodically adjusted to lock in profits as the market moves in a favorable direction. For 
example, in a long position a trader might enter a market and place a stop-loss order 20% below the stock price, which is 
like the lower absorbing boundary. If  the price increases by 10%, which is like the upper target boundary, and the trade has 
not yet been stopped out, the stop-loss order is raised to 20% below the current price. Finally, if  the stock price languishes 
for too long, perhaps it’s “going nowhere” and it is time to sell the asset. This process continues until the trade is finally 
stopped out. 

To evaluate the performance of  such a “trailing stop” strategy, we need to obtain the probability distribution of  a set 
of  feasible termination and non-termination states for a given planning horizon. In this paper we develop a procedure to 
compute this probability distribution. 

The rest of  the paper is organized as follows: section 2 provides the model development and main results; section 3 
presents several numerical examples to illustrate use of  the procedure; section 4 concludes. 

 
2. NOTATION AND MODEL DESCRIPTION 

Assume that we are given a basic state space {( , ) : ( , ) }x t x t    and a probability distribution { ( , ) | ( , ) }P x t x t    
over the states in  . First define three disjoint subsets of  the basic state space . These states are associated with the 
wandering process. 

1
 : the “target” states. 

                                                 
1 It is also Fig.1 in Warburton and Zhang (2006). 
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2
 : the “non target” absorbing or time T  states. 

3
 : the “intermediate” states 

3 1 2
\ ( )     . 

Then we define the following conditional probabilities for the underlying basic state space  . 
(i) 

1
( , )P x t : the probability that the basic T period trinomial process is in a state 

1
( , )x t    given that the process 

reaches the target. 
(ii) 

2
( , )P x t : the probability that the process is in a terminal state 

2
( , )x t    given that the process does not reach 

the target. 
(iii) 

3
( , )P x t : the probability that the process is in an intermediate state 

3
( , )x t    given that the process does not 

reach the target. 
Note that the probabilities 

1
( , )P x t  and 

2
( , )P x t  and 

3
( , )P x t  can be computed using the procedure presented in 

Art and Zhang (2003). We now develop some important recursions for computing the probability distributions. Define a 
complete cycle of  the process as the time between two consecutive target re-settings (translations). We know that the 
process terminates after n cycles according to a geometric distribution with probabilities 1( ) (1 )( )nU n p p   , 1n   , 

where 
1

1 ( , ) )
( ) ( , )

x t
P P P x t


   . 

We can write separate recursions for terminal and non-terminal states for the wandering process. The form of  each 
recursion is the same. The following describes these two sets of  recursions; one for terminal states at which the wandering 
process terminates at time t  ( 2)f   the other for states where the wandering process is still in process at time t  

( 3)f  . Let ( )( , )n
f

P x t  be the probability that the process terminates after n  cycles, and ( )n
f

  be the set of  all 

price-time possibilities (hereinafter called states) if  the wandering process terminates in n  cycles. 
 

Theorem 1. The probability that the process is in state ( , )x t , given that the process terminates in n  cycles satisfies the 
recursion 

( 1)
1

( ) ( 1)
1

( , )
( , )

( , ) ( , ) ( , )
n

f

n n
f f

k i
x k t i

P x t P k i P x k t i





  

                                                           (1) 

Proof. We start with the first cycle. Suppose the wandering process terminates in one cycle and consider any time t T  . 

Let ( , )
f

x t    be given. Then ( , )
f

P x t   is the probability that the process is in state ( , )
f

x t    at time  given that the 

wandering process terminates in one cycle. 
If  the wandering process terminates in 2 cycles, we can interpret the event as the first cycle succeeds and the second 

cycle fails, and 
 

( )
1

{( , ) : ( , ) ( , ) ( , ),( , ) ,( , ) }n
f f

x t x t k i m j k i m j                                                (2) 

1

(2)
1

    ( , )
( , )

( , ) ( , ) ( , )

f

f f
k i

x k t i

P x t P k i P x k t i


  

                                                          (3) 

is the probability that the process is in state ( , )x t  if  the process terminates in 2 cycles. Suppose the wandering process 
terminates in 3 cycles. Then the first two cycles succeed and the third cycle fails. Let 

(2)
1 1 1

{( , ) : , ,,( , ) ,( , ) }x t t i j x k m k i m j                                                  (4) 

be the set of  all price-time possibilities just at the end of  2 successful cycles. Let (2)
1

( , )x t    and let (2)
1

( , )P x t  be the 

probability that the process first reaches price level x  at time t  given that the first two cycles succeed at time ( )t i   
at level ( )x k , so 

1

(2)
1 1 1

    ( , )
( , )

( , ) ( , ) ( , )

f

k i
x k t i

P x t P k i P x k t i


  

                                                              (5) 

Let (3)
f

  be the set of  all price time possibilities ( , )x t  if  the wandering process terminates in 3 cycles. That is 
(3) (2)

1
{( , ) : ( , ) ( , ) ( , ),( , ) ,( , ) }

f f
x t x t k i m j k i m j                                                (6) 

Let (3)
1

( , )x t    and let (3)( , )
f

P x t  be the probability that the process is in state ( , )x t  given that the process 

terminates in 3 cycles. Then 
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(2)
1

(3) (2)
1

    ( , )
( , )

( , ) ( , ) ( , )

f

f f
k i

x k t i

P x t P k i P x k t i


  

                                                        (7) 

Suppose the wandering process terminates in n  cycles. Then the first ( 1)n   cycles succeed and the final cycle fails. 
Let 

( 1) ( 2)
1 1 1

{( , ) : , ,( , ) ,( , ) }n nx t t i j x k m k i m j                                                (8) 

be the set of  all price time possibilities just at the end of  ( 1)n   successful cycles. Let ( 1)
1

( , ) nx t    and let 
( 1)

1
( , )nP x t  be the probability that the process first reaches price level x at time t  given that the first ( 1)n   cycles 

succeed. If  the total time to the end of  the first ( 2)n   cycles is i , then cycle ( 1)n   succeeds at time ( )t i , so 

( 2)
1

1

( 1) ( 2)
1 1 1

    ( , )
( , )

( , ) ( , ) ( , )
n

n n

k i
x k t i

P x t P k i P x k t i


 


  

                                                     (9) 

Let ( )n
f

  be the set of  all price time possibilities ( , )x t  if  the wandering process terminates in n  cycles. That is 
( ) ( 1)

1
{( , ) : ( , ) ( , ) ( , ),( , ) ,( , ) }n n

f f
x t x t k i m j k i m j                                             (10) 

Let ( )( , ) n
f

x t    and let ( )( , )n
f

P x t  be the probability that the process is in state ( , )x t  given that the process 

terminates in n  cycles. Then equation (1) is achieved.      □  
 
Based on this recursion, we can compute the joint probabilities as follows. 
For 2,  3f   we have the following joint probabilities: 

f
Prob ( process terminates in ( 1)n   cycle and is in state (1)( , )

f
x t   ) = (1)(1) ( , )

f
U P x t , where 

(1)( , ) ( , )
f f

P x t P x t ; 

f
Prob ( process terminates in ( 2)n   cycle and is in state (2)( , )

f
x t   ) = (2)(2) ( , )

f
U P x t ; 

f
Prob ( process terminates in ( 3)n   cycle and is in state (3)( , )

f
x t   ) = (3)(3) ( , )

f
U P x t ; etc..  

So finally, for 2,  3f   we have 
f

Prob  (wandering process is in state ( , )x t ) =
( )

( )
1

( , )
( ( ) ( , ))

n
f

n
n f
x t

U n P x t


 .  

    The overall probability of  being in state ( , )x t  is: 

Prob ( wandering process is in state ( , )x t )=
3

2 ff
prob

  (wandering process is in state ( , )x t )  

Note that the above summations involve only finitely many n  for any given t , if  we assume that state transitions are 
always of  the form ( , ) ( , 1)x t y t   since   is finite. 

Remark ― summing over all x  at a given t  won’t sum to 1 if  it is possible that the wondering process has been 
terminated before t .  

 
3. NUMERICAL EXAMPLE 

In this section, numerical examples are presented to illustrate the results of  our model and to locate the best 
trailing-stop strategy. Assume the asset price follows a geometric Brownian motion process and p , q , and r  are the 
probabilities of  an up movement, a down movement and a mid movement in a trinomial tree. Then 

/2/2
2

/2 /2
( )
e e

p
e e



 

 

  





,  

/2 /2
2

/2 /2
( )

e e
q

e e

 

 

 

  





 and 1r p q    where   is the mean,   is the standard 

deviation and   is the time step. Based on the S&P 500 data from 1871 to 2010, its mean,  , and standard deviation, 
  , are 0.106185 and 0.189392.2 p Therefore the transitional probabilities, , q  and r , are 0.2604868, 0.4997845 and 
0.2397286 respectively. In each simulation the stock price process is approximated over a four-week horizon, which is 20 
business days, H T   with T  =20 and  =1 day where T  is the termination period. The stock’s initial price is $1. 
Once stop out, the assets will be invested into a risk-free bond market where they are all terminated at T . The risk-free rate 
of  return, 

f
r , is assumed to be 0.02 and interest can accrue day by day. Thus the four-week gross return from a risk-free 

asset is 1.0015728. 
 

                                                 
2 The returns include dividends. Data can be found at Online Data Robert Shiller (http://www.econ.yale.edu/~shiller/data.htm). 
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3.1  A fixed trailing-stop strategy 
We start with a fixed trailing-stop strategy in which the absorbing period, TT , is fixed. When the trailing-stop strategy 

is applied, we first assume the strategy is checked out on a weekly basis. This implies TT  is 5 and is the length of  each 
cycle. Assume 

t
L  is the stop-loss price level in time interval t , and 

t
K  is the target price level in time interval t . For 

different values of  
t

L  and 
t

K , the gross rate of  return, 
x

  and the standard deviation, 
x

  will be different as well. 

For example, when 1
t

L   and 1
t

K  , 
x

  and 
x

  are 1.0029 and 0.0250. When 2
t

L   and 1
t

K  , 
x

  and 

x
  are 1.0040 and 0.0333. As 

t
L  and 

t
K  both could change from 1 to TT , Table 1 reports the gross rates of  return 

and Table 2 reports the standard deviations from all possible combinations of  
t

L  and 
t

K . 
 

Table 1. Gross rates of  return when 
x

  and 
x

  are 0.106185 and 0.189392 

\
t t

K L  1 2 3 4 5 
1 1.0029362 1.0040007 1.0042296 1.0042640 1.0042665 
2 1.0029750 1.0035351 1.0036641 1.0036838 1.0036852 
3 1.0028532 1.0032901 1.0033946 1.0034105 1.0034117 
4 1.0027938 1.0032012 1.0032990 1..0033139 1.0033150 
5 1.0027790 1.0031810 1.0032775 1.0032922 1.0032932 

 
Table 2. Standard deviations when 

x
  and 

x
  are 0.106185 and 0.189392 

\
t t

K L  1 2 3 4 5 

1 0.0249818 0.0332872 0.0346098 0.0347805 0.0347912 
2 0.0251996 0.0294865 0.0302759 0.0303801 0.0303866 
3 0.0238279 0.0272193 0.0278815 0.0279686 0.0279740 
4 0.0231080 0.0263055 0.0269330 0.0270154 0.0270205 
5 0.0229142 0.0260779 0.0266985 0.0267798 0.0267849 

 
These two tables show the positive correlation between the gross rates of  return and the standard deviations. The 

outcomes indicate that the optimal ( , )K L =(1,5), which implies that the investors should stay in the stock market as 
possible as they can. This is the case when the returns on stock are more favorable than on risk-free asset. The outcomes of  
gross returns and standard deviations are reported in Table 3. If  we only consider the S&P 500 data from 2000 to 2008, its 
mean and standard deviation are -0.01672 and 0.203870 respectively. The outcomes of  gross returns and standard deviations 
are reported in Table 4 given the same values of  T and TT (which are 20 and 5 respectively). 

 
Table 3. Gross rates of  return when 

x
  and 

x
  are -0.010672 and 0.203870 

\
t t

K L  1 2 3 4 5 

1 1.0010350 1.0006129 1.0005144 1.0004985 1.0004974 
2 1.0010163 1.0007835 1.0007259 1.0007165 1.0007158 
3 1.0010586 1.0008717 1.0008241 1.0008163 1.0081570 
4 1.0010788 1.0009026 1.0008576 1.0008503 1.0008497 
5 1.0010836 1.0009093 1.0008674 1.0008575 1.0008570 
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Table 4. Standard deviations when 
x

  and 
x

  are -0.010672 and 0.203870 

\
t t

K L  1 2 3 4 5 

1 0.0247754 0.0331018 0.0347903 0.0350588 0.0350790 
2 0.0252193 0.0300817 0.0311849 0.0313625 0.0313763 
3 0.0242761 0.0283996 0.0293726 0.0295294 0.0295416 
4 0.0238153 0.0277923 0.0287344 0.0288863 0.0288981 
5 0.0237062 0.0276607 0.0285977 0.0287486 0.0287604 

 
When mean and standard deviation are -0.01672 and 0.203870 respectively, the optimal ( , )K L =(1,5), which implies 

that the investors should keep away from the stock market as much as they can. When ( )K L  increases given the values of  
( )L K , it is more difficult to move to the next stage, which increases the probability of  stopping out; at the same time, it is 

more difficult to stop out in the current stage. From Table 4, we notice that the return is generally increasing with ( )K L  
given the value of  ( )L K . This is not true for K =1 and 2 when L =1. 

This relationship is displayed in Figure 3 and Figure 4 with different 
x

  and 
x

 . The star on the vertical axis 

indicates the risk-free asset. Crosses are the outcomes from different 
t t

L K  combinations. 
 

     
Figure 3. Scatter plot when 

x
  and 

x
  are            Figure 4. Scatter plot when 

x
  and 

x
  

   0.106185 and 0.189392                             are -0.01672 and 0.203870 
 
 
In the above two cases TT  is predetermined to be 5, though there is no evidence to show that 5 is the optimal value 

for TT . 
 

3.2  A flexible trailing-stop strategy 

 
Now we assume that only the termination period, T , is fixed and TT  ranges from 1 to T . For any value of  TT , 

by using the method from the previous subsection we are able to find different values of  
x

  and 
x

  for different 
t

K  

and 
t

L as shown in Table 1 and 2 when TT  is 5. Because agents are always better off  with a higher rate of  return and 

lower risk, we assume 
x

  is their first concern. Thus for any value of  TT they choose the outcome with highest 
x

 . 

Table 5 and Figure 5 present the highest values of  
x

  with corresponding 
x

  when TT changes from 1 to 20. 
x

  is 
the number in the table multiplied by 10⁻⁴. 
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Table 5. 
x

  and 
x

  with different TT  

TT  1 2 3 4 5 

x
  1.0017827 1.0020179 1.0022690 1.0025294 1.0027898 

x
  0.0054279 0.0079626 0.0100226 0.0118055 0.0133500 

TT  6 7 8 9 10 

x
  1.0030402 1.0032731 1.0034843 1.0036728 1.0038388 

x
  0.0146641 0.0157639 0.0166743 0.0174243 0.0180400 

TT  11 12 13 14 15 

x
  1.0039826 1.0041073 1.0042156 1.0043098 1.0043915 

x
  0.0185419 0.0189534 0.0192931 0.0195744 0.0198071 

TT  16 17 18 19 20 

x
  1.0044620 1.0045222 1.0045727 1.0046135 1.0046438 

x
  0.0199999 0.0201547 0.0202793 0.0203748 0.0204415 

 
 

 
Figure 5. 

x
  and 

x
  with different TT   

 

From Table 5, we can see that the values of  
x

  and 
x

  are monotonically increasing with TT . Figure 6 and 7 
visualize the stop out probabilities when T  is 5 and 20. When TT is 5, the pike of  stop out probability appears at TT  
and then wanes until the termination period. When TT  equals T , the asset will only be stopped out at the termination 
period. This implies that the longer the agents stay in the stock market, the higher return they can earn, though with higher 
risk. 
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Figure 6. Stop out probabilities when TT is 5         Figure 7. Stop out probabilities when TT is 20 
 

The above outcomes appear when the return from the stock market is favorable, that is,   is greater than 
f

r . If  not, 

we may get different pattern of  results. Figure 8 presents the outcomes when 
f x

r   while Figure 9 presents the 

outcomes when 
f

r  remains at 0.02 but 
x

  and 
x

  are -0.01672 and 0.203870 respectively. 

 

      
Figure 8. Scatter plot when 

x
  and 

x
                Figure 9. Scatter plot when 

x
  and 

x
  

are 0.106185 and 0.189392                          are -0.01672 and 0.203870 
 

Even though Figure 8 presents an upward sloping line, its slope at any given 
x

  is much smaller than the one in 
Figure 5. An agent must take much more risk to pursue the same extra return from the stock market, making the trade-off  
line in Figure 5 is preferable. It also implies that even though stock market returns are favorable, a higher risk-free rate will 
flatter the positive trade-off  line between 

x
  and 

x
 , and the slope would turn negative after the situation changes, as 

shown in Figure 9. When stock market returns are not favorable, the best thing the agent can do is to keep away from it.  
In the above simulation we changed the values of  risk-free rates while keeping the return from the stock market 

constant. We can also do the reverse: change the values of  
x

  and 
x

  by picking up different stocks but keeping the 
risk-free rate constant. We would end up with similar results. 

 
3.3  The optimal trailing-stop strategy 

 
To locate the optimal strategy, we need introduce preference curves. These curves express the risk-return trade-off  for 

investors in two-dimensional space. We are not only able to identify the optimal trailing-stop strategy given the knowledge 
of  one stock’s prices but also can use it to find the best stock to help the agent achieve the highest utility. 

The optimal strategy is determined by the investors’ preferences for higher returns to lower returns and less risk to 
more risk. All investors are assumed to be risk averse and to prefer more to less. Some representative curves for three 
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different types of  investors are presented in Figure 10: more risk-averse, moderately risk-averse, and less risk-averse. The 
whole set of  nested curves is omitted to keep the picture simple. 

 
 

 
    Figure 10. Preference over mean and standard deviation 

 
Different functional forms are used to represent this mean-standard deviation preference. The essential feature of  the 

function is that it must allow people to demand ever-increasing levels of  return for assuming more risk. For the purpose of  
illustration, here we use the function derived by Mclaren (2009) for a much more realistic example of  lognormally 
distributed assets, and constant relative risk aversion (CRRA) preferences.3
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


 

                                                           (11) 

in which   is a positive parameter measuring the degree of  risk aversion. The smaller is  , the less risk averse the agent 
is. We assume   for a more risk averse agent is 8, for a less risk-averse agent is 4. Graphically the optimal strategy is the 

point with ( , )
x x

   which touches the highest indifference curve in Figure 5. Figure 11 shows the different optimal 
strategies for different type of  investors. Because of  the high returns of  S&P 500 relative to risk-free assets, investors do not 
need to be very risk averse to be involved in the stock market (  <5). 

 

 
Figure 11. Optimal trailing-stop strategies 

 
We only use one index in the above example, while in the real world there are many portfolios we can choose from. For 

example, we can use another famous index: the Dow Jones Industrial Average. Based on data of  the adjusted close prices 
from 1928 to 2011, its mean,  , and standard deviation,  , are 0.064273 and 0.194874. Intuitively, the S&P 500 yields 

                                                 
3 Please see MaLaren (2009) for detailed proof. 
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higher returns at almost the same risk. Applying the trailing-stop strategy on it, the graph of  trade-off  lines is shown in 
Figure 12. 

 

          
Figure 12. The trade-off  ( , )

x x
   of  the S&P 500  

and the Dow Jones Industrial Average 
 
From Figure 12, the trade-off  line of  the S&P 500 is steeper than the one for the Dow Jones Industrial Average, which 

implies the S&P 500 is better for most investors on average. More specifically, because the trade-off  line for the Dow Jones 
Industrial Average is under that for the S&P 500, investment in the Dow Jones Industrial Average is dominated by 
investment in the S&P 500, since the indifference curves which could be achieved facing the trade-off  line of  the S&P 500 
are all higher than those of  the Dow Jones Industrial Average. 

 
 

3.4  Efficiency of  the trailing-stop strategy 
 
Now we know how to locate an optimal trailing-stop strategy when the investor faces the option of  entering the stock 

market or investing in risk-free assets. But the above analysis seems redundant, given the concave trade-off  curve between 
expected value and standard deviation, as this trailing stop strategy is dominated by partially investing in risk-free assets and 
partially investing in the stock market. Therefore, if  we assume that price follows geometric Brownian motion, the 
trailing-stop strategy may not be good for stock trading. 

When partially investing in risk-free assets and partially investing in the S&P 500, ( ,  )   of  this portfolio must lie on 
the linear segment between the two extreme points, and the standard deviation of  the rate of  return on the risk-free asset is 
0. Assuming the same preferences as before, the optimal share of  each asset can be found by setting the indifference curves 
tangent to the trade-off  line, as shown in Figure 13. Not surprisingly, if  investor is more risk averse ( 8)  , the optimal 
portfolio contains 70.1% risk-free assets and 29.9% stock assets; if  she is less risk averse ( 4)  , her portfolio shall 
contain 39.9% risk-free assets and 60.1% stock assets. Both dominate the outcome from trailing stop strategy. Figure 14 
shows the optimal portfolio of  risk-free assets and the Dow Jones Industrial Average. If  ( 8)  , the optimal portfolio 
contains 85.5% risk-free assets and 14.5% stock assets; if  ( 4)  , the portfolio shall contain 70.9% risk-free assets and 
29.1% stock assets. This is consistent with the intuition that the Dow Jones Industrial Average yields lower returns than the 
S&P 500, with similar risk. It is more risky to invest in the Dow Jones Industrial Average, thus investors tend to increase the 
share of  risk-free assets in their portfolios. 
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Figure 13. Optimal portfolio containing                Figure 14. Optimal portfolio containing 

risk-free assets and the S&P 500                        risk-free assets and the DJIA 
 
 

4. CONCLUSION 

Trailing-stop strategies are commonly used for stock trading, and many investors believe it is a good strategy to balance 
return and risk. Even though different assumptions lead to different optimal trailing-stop strategies for stock trading, the 
basic frameworks are very similar. This paper examines the validity of  the trailing-stop strategy proposed by Warburton and 
Zhang (2006) in which they assume the trinomial tree of  price moving which is a discretized description of  geometric 
Brownian motion. After characterizing their model, we provide some numerical examples by using data from the S&P 500 
and the Dow Jones Industrial Average to identify the optimal trailing-stop strategy under the same assumptions and trading 
rules. By fixing the duration to absorbing period and further relaxing this constraint, we locate the optimal trailing-stop 
strategy and derive its return and risk measurements. After analyzing the outcomes of  both fixed and flexible trailing-stop 
strategies, we show that the trade-off  line with maximum returns, given different absorbing duration from a trailing-stop 
strategy, is upward sloping when the return on the S&P 500 is more preferable than that on risk-free assets. Otherwise it is 
downward sloping, which implies that the best strategy is to keep away from the stock market. But the most interesting 
finding is that the upward trade-off  line is concave, implying that no single trailing-stop strategy is optimal when compared 
to a portfolio containing both risk-free assets and S&P 500 stocks without any trailing stop. Therefore, under the framework 
of  Warburton and Zhang (2006) and the assumption of  geometric Brownian motion, the trailing-stop strategy is not ideal 
for stock trading.. 
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