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Abstract  In this paper, we study the application of  mixed-integer programming (MIP) to the clusterwise linear 
regression (CLR) problem with the least sum of  absolute deviations, which is a type of  CLR problem that has received both 
theoretical and practical interests in recent years. We formulate the problem with a big-M formulation and investigate related 
issues, including the integration of  outlier detection into CLR analysis. To improve the global optimization solution, we 
explore the resolution of  breaking the solution symmetry that is prevailing in conventional formulations of  many clustering 
analysis problems. Our numerical studies on randomly generated problem instances and two real data sets offer insights into 
the computational performance of  solving the MIP formulations.  
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1. INTRODUCTION 

Mathematical programming (MP) approaches have received considerable attention in statistical analysis since the 
seminal work by Charnes, Cooper and Ferguson (1955). Only to cite a few works in the past decades, Arthanari and Dodge 
(1981), Bertsimas and Shioda (2007), and Agullo (2001) in regression analysis; Aronson and Klein (1989), and Stanfel 
(1981,1986) in cluster analysis; and Nguyen and Welsch (2010a, 2010b), and Zioutas and Avramidis (2005) in outlier 
detection. However, most MP models are designed for one data analysis task. On the other hand, most real-world data 
require the combination of  several tasks, e.g., clusterwise regression analysis that integrates cluster and regression analysis.  

In marketing research and practice, benefit segmentation is extensively used to provide indications for marketing 
(Beane and Ennis 1987, Wind 1978). The benefit segmentation problem can be described with clusterwise regression model 
(Punj and Stewart 1983, Wedel and Kistemaker 1989). Clusterwise regression has also been discussed in response based 
segmentation of  customers, regions, subjects, strategies or investors (Carbonneau et al., 2011; Hennig, 2000; Lauet et al., 
1999; Spath, 1979). As a motivating example to this investigation of  clusterwise regression analysis, we consider a service 
spending segmentation problem in analyzing publicly funded traumatic brain injury (TBI) inpatient rehabilitation service 
payment claim data. This segmentation problem is important to publicly funded health insurance policy makers. In this 
problem, a public insurer intends to model the interaction of  service duration and spending based on the data collected 
from a cohort of  TBI patients who receive inpatient rehabilitation services. If  the TBI patients have homogeneous duration 
elasticity, the elasticity can simply be estimated by a regression of  the spending on the duration. However, in the real world, 
the patients are heterogeneous on the service duration, depending on their injury severity, acute hospitalization condition, 
and rehabilitation service usage behavior. If  one ignores the duration elasticity, the estimated spending elasticity would 
certainly be biased and inaccurate. Therefore, for the public insurer, the task is to identify mutually exclusive segments that 
partition the patients on the basis of  duration elasticity and conduct a regression within each cluster. This leads to a 
clusterwise regression problem. 

In summary, the analysis of  real data set often involves simultaneous application of  several related statistical models. In 
the case where one realizes through data collection that a set of  linear relationships may well explain the data set, it may be 
required to apply clustering and linear regression models simultaneously. The traditional regression model assumes the 
regression coefficients to be identical for all subjects in the sample. This homogeneity assumption is sometimes unrealistic. 
On the other hand, the clusterwise regression model assumes identical coefficients for members within a cluster, which is 
more suitable for many real-world data modeling applications. 

To integrate cluster analysis into a regression framework, clusterwise linear regression has been investigated extensively. 
This type of regression is based on the concept of fitting multiple lines to mutually exclusive subsets of the data. Therefore, 
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it is a clustering problem with the objective of  finding a pre-determined number of  lines that best fit the data in some form 
of  minimization. Spath (1979, 1982, 1986) proposed the so-called exchange algorithms which use the QR-decomposition 
technique to minimize the sum of  square errors in the integrated model. The exchange algorithms were further adapted by 
Meier (Meier, 1987) to minimize the sum of  absolute deviations. Although these algorithms are easy to implement, they are 
not exact solution methods and their performance is sensitive to the initial partition and outliers. More recently, 
metaheuristics were developed to solve the CLR problem, including genetic algorithms (Aurifeille, 2000; Aurifeille and 
Medlin, 2001), variable neighbor search (Caporossi and Hansen, 2005), and simulated annealing (Desarbo, Oliver and 
Rangaswamy 1989). Although the results of  these metaheuristics are encouraging, they are sensitive to algorithm parameters.  

In this paper, we focus on the MP formulation of  clusterwise linear regression (CLR) analysis. MP based solution 
methods offer a generic set of  methods for identifying global optimal solutions to certain types of  CLR problems. Lau, 
Leung and Tse (1999) stated that the CLR problem is a hard combinatorial optimization problem and conjectured that it is 
NP-hard given its similarity with the set covering problem. This well explains why the focus of  the literature before 2000 
had been the development of  heuristic methods. However, applying MP to the CLR problem is of  theoretical and practical 
interest. Such interest is sustainable as continuing innovation on MP based solution methods is more feasible and desirable 
than that on the heuristics. First, global optimization solutions lead to better CLR models than those derived from random 
local optima identified by the heuristics. Second, several decades’ development on MP-based solution for clustering and 
regression models lay solid foundation on developing efficient methods for solving MP formulations of  CLR models. 
Meanwhile, rapid development of  commercial mixed-integer programming solvers in recent years makes efficient solution 
of  industry-size CLR instances become increasingly possible. Third, a global optimization algorithm can serve as a building 
block for developing efficient heuristics by finding optimal solutions for subsets of  subjects, which can subsequently be 
used to analyze the entire set of  subjects. Finally, globally optimal solutions can be useful to further research on quality 
measures of  CLR models. 

In this paper, we focus on the CLR problem with the least sum of  absolute deviations (LSAD) over clusters. In other 
words, we identify a fixed number of  clusters and for each cluster we estimate the parameters in linear regression. Our 
objective is to identify the clusters such that we minimize the sum of  absolute deviation of  each subject to its corresponding 
linear regression model. I term this problem the CLR-LSAD problem and use this acronym in the remainder of  the paper. 
Considering regression alone, the estimation technique using the least absolute deviation (LAD) is more applicable to a 
board range of  cases than the estimation technique using the least square error (LSE) as the latter one has to assume that 
the regression residual is normally distributed. Narula and Wellington (1982) concluded that 1) the LAD estimator is more 
robust, i.e., less sensitive than the LSE estimator to the presence of  outliers; and 2) the LAD estimator tends to be superior 
to the LSE estimator in many non-Gaussian cases, especially those when the residual follows distributions with long tails. 
Bassett and Koenker (1978) showed that the LAD estimator has a strictly smaller confidence ellipsoid than the LSE 
estimator in cases where the residual follows a distribution whose sample median is a more efficient estimator of  location 
than the sample mean. 

In this paper, we first present a big-M formulation for the CLR-LSAD problem, which is a mixed-integer programming 
(MIP) formulation. We next develop an MIP formulation for integrating outlier detection into the CLR analysis framework. 
To speed up the global optimization solution, we introduce a class of  constraints that are used to break the solution 
symmetry among clusters. Finally, we use both randomly generated and real-world data to conduct a thorough investigation 
on the factors that affect the computational performance of  solving CLR-LSAD directly via standard branch and bound. 
Our main contribution in this paper is using an MIP framework to integrate clustering, regression, and outlier detection. 
Our numerical studies gained insights into the computational aspect of  applying MP-based methods to CLR-LSAD and 
CLR in general. 

The remainder of  the paper is organized as follows. In Section 2, we present several MIP formulations for the 
integrated CLR analysis framework. In Section 3, we introduce a set of  symmetry-breaking constraints to speed up the 
global optimization method. In Section 4, we report our numerical studies on how the solution of  CLR-LSAD is affected by 
instance characteristics and the symmetry-breaking constraints. We offer concluding remarks and outline future research in 
Section 5. 

 
2. AN MIP APPROACH TO CLUSTERWISE LINEAR REGRESSION ANALYSIS 

2.1  Model Description 
We take a sample of  n subjects from a studied population, namely 1

, , ,i i i
m

x x y , i=1,…,n. Each subject consists of  m 

independent variables (e.g., education, age, gender, etc.) and one dependent variable (e.g., income). We are asked to divide 
the samples into K mutually exclusive segments, each of  which forms a linear regression model. Our task is to cluster the 
subjects and conduct linear regression in each cluster. Our objective is to minimize the sum of  the absolute deviation for 
each subject to its corresponding linear regression model. 
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Note that both k

i
  and k

j
 , i = 1, …, n, j = 1,…,m, and k = 1,…,K, are decision variables in (P0). Constraints (2) 

indicate that each subject should belong to exactly one cluster. For the subjects that belong to the same cluster, say k, the 
optimal solution on 

0
k  and k

i
  imply the linear regression model.  

Several heuristics have been developed to solve (P0) (Desarbo et al., 1989; Spath 1979, 1982), but these methods do not 
guarantee global convergence and their computational performances are influenced by the initial solutions. Lau et al. (1999) 
applied an MP approach and proposed a nonlinear MIP formulation for the CLR problem with generic likelihood measures. 
Furthermore, to address the potential regression model overfitting issue, we impose lower bounds on the cardinality of  each 
cluster in (P0) with the following additional constraints: 

 

1

, 1, , .
n
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i

i

c k K


                       (4) 

 
2.2  A Big-M MIP Reformulation 
 
It is easy to see that (P0) can be naturally reformulated as a quadratic MIP. However, there are computational challenges to 
solve quadratic MIPs exactly with proof  of  optimality. To resolve these challenges, we propose a big-M MIP reformulation 
as: 
 

(P1):      
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                (8) 

        R 1
0 1

0,1 , , 0, , , , , 1,..., , 1,..., .k k k k k k m
i i i m

z z i n k K   
 

             (9) 

 
Here M is some large positive number. With constraints (7) and (8), we linearize the products of  cluster indicator 

variables and continuously valued residuals. To use the big-M reformulation in actually solving the CLR-LSAD problem, the 
value of  M must be specified sufficiently large to ensure the reformulation equivalence. It is clear that the smallest value for 
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M is the maximum distance among all subjects to any clusterwise regression line, which is not attainable beforehand. In this 
paper, we set M to be the maximum distance among all pairs of  subjects, which can be computed in O 2( )n . Next in 
Theorem 1, we establish the equivalence between the MIP reformulation and the original nonlinear MIP formulation.  
 
Theorem 1 The two formulations (P0) and (P1) are equivalent. That is, solving them will obtain the same optimal objective function value and 
the optimal solution in terms of    and ζ . 
 

Proof Let    ( , , , )z z 




    be an optimal solution to (P1), where  ,  ,  z 
 , and  z 

  are all row vectors of  proper 

dimensions that piece together the respective decision variables, e.g. 1 1 2
1 1 1

( , , , , , , , )K K
n n

             ). It is easy to see 

that ( , )   is a feasible solution to (P0). We then consider two cases for each pair  , , 1, ,i k i n   and 1, , .k K   
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the optimality, we have     0K K
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In addition, with respect to the pair ( , )i k , the objective function value in (P1) associated with ( , )   is equal to that in 
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   in (P0). This implies that the two objective function values are also identical in the second 

case with respect to the pair ( , )i k . Either of  the two cases applies for each ( , )i k  pair, 1, ,i n   and 1, , .k K   
Then the two cases together imply that solving (P0) yields a larger optimal objective function value than solving (P1). Next 
we prove the statement of  the opposite direction to complete the proof. 
 Let ( , )   be an optimal solution to (P0). We construct a feasible solution to (P1) based on ( , )   as follows. First, 

we keep ˆˆ( , )   for the   and   components. Then for each pair ( , )i k , 1, ,i n   and 1, ,k K  , we need to 
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z
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 satisfies the constraints (7) and (8) with respect 

to  , .i k  Then the two cases together imply that solving (P1) yields a larger optimal objective function value than solving 

(P0) with the above specification on ˆ( ,z ˆ )z . Therefore, the result of  the theorem follows. ▓                                                                   

 Solving (P1) yields an optimal solution on   and  . With the optimal k
i
 , we can specify which cluster the subject 

I belongs to. With the optimal solution on 
0
k  and 

0
k , we can further specify the regression model. For our preliminary 

numerical studies presented in this paper, we solve (P1) directly using standard branch and bound. Note that potentially 
large values of  M may lead to substantial computational burden and numerical instability (Lustig, 1990). We leave innovative 
computational considerations to our future research.  
 
2.3 Outlier Detection in CLR Analysis 
 

An implicit assumption in (P1) is that the data set does not contain outliers. Unfortunately, real-world data sets often 
contain outliers, for which solving (P1) can lead to bias and inaccurate clustering and regression lines. In this section, we 
extend the big-M reformulation in Section 2.2 to identify outliers together with conducting CLR analysis. We present an 
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MIP formulation that embeds outlier detection into (P1) as: 
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In the above formulation, for each 1, , ,i n   the additional binary decision variable 

i
  indicates whether subject i 

is regarded as an outlier. The penalty scalar T quantifies the threshold level for each subject being regarded as an outlier to 
any cluster. For a subject i, if  the smallest residual among those to the various regression lines is still less preferred to paying 
the penalty, then the subject should be regarded as an outlier, i.e., 1.

i
   Typically, one has some prior knowledge to 

determine the value of  T. 
 In the remainder of  this subsection, we use a numerical example to illustrate the effect of  embedding outlier detection 
to CLR analysis. We consider the two underlying linear models, y x  and 2y x . We randomly generate ten subjects 
associated with each linear model. We arbitrarily select two outliers, each of  which has an absolute deviation of  at least 5 to 
either linear model. We specify 3.T   The results are illustrated in Figure 1. Without outlier detection, the CLR analysis 
(i.e., solving (P1)) outputs two linear models. With outlier detection, the CLR analysis (i.e., solving (P2)) outputs drastically 
different linear models and identifies all the outliers. 

 

 
 

(a) Without outlier detection                          (b) With outlier detection 
 

Figure 1. An illustration of  the importance of  embedding outlier detection in CLR analysis. Note that the cardinality of  
each cluster must be greater than 5, with which we can exclude the possibility of  grouping outliers into extra clusters. 

 
3. DEALING WITH SOLUTION SYMMETRY 

Many MIP formulations suffer from symmetry in their solution space, i.e. the formulation does not exclude alternative 
solutions that exist with the same objective function value and thus many of  them may be checked during the exploration 
of  the branch-and-bound tree. As a result, unnecessarily duplicate search may be conducted and thus computation time can 
increase significantly. Solution symmetry is a prevailing challenge in conventional formulations of  many clustering problems. 
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A well known example is the node coloring problem (Campelo et al., 2008; Mehrotra and Trick, 1996; Mendez-Diaz and 
Zabala, 2006), also known as the graph or vertex coloring problem. A set of  symmetric solutions can be obtained by 
clusterwise permuting a feasible solution in (P0) and (P1). For example, suppose there are two clusters and four subjects, if  a 
feasible solution is subjects 1 and 2 in cluster 1 and subjects 3 and 4 in cluster 2, then exchanging the cluster indices leads to 
an alternative feasible solution with the same objective function value. In this section, we present two ideas to eliminate the 
symmetry between the clusters which exists in (P0) and (P1). 
 First, we present an asymmetric representative formulation (ARF) for the CLR-LSAD problem, inspired by the ideas 
in Campelo et al. (2008) and Jans and Desrosiers (2010). Campelo et al. (2008) first introduced an ARF for the node coloring 
problem. Jans and Desrosiers (2010) generalized the idea to model a variety of  clustering problems. The decision variables 
in these ARFs indicate whether a subject belongs to a specific cluster, but the cluster is identified by the lowest indexed 
subject. Let 1h

i
   if  subject 1, ,i n   is in the same cluster with subject 1, ,h n   and subject h is the lowest 

numbered in that cluster; otherwise, let 0h
i

  . We use the above defined asymmetric decision variables to present the 
ARF with the big-M notation as:  
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In the above ARF, we use constraints (16) – (18) to replace constraints (6) in (P1). It is easy to see the equivalence with 

the definition of  asymmetric decision variables. We again introduce the big-M notation to realize the linearity in the above 
ARF. In a similar manner to the proof  for Theorem 1, we can verify its correctness and equivalence to the original nonlinear 
ARF. Note that the difference from (P1) is that we need to index each regression line coefficient by both i and h in the 
above formulation since we do not have a cluster indicator from 1 to K. 
 In the above formulation, the numbers of  variables  , z , z  are all ( 1) / 2.n n   Additionally, we need to 

define ( 1) / 2n n   variables 
i

  for each subject dimension 0,1, , .j m   Hence, more decision variables are 
required compared to (P1), especially when K is small. Meanwhile, more constraints are also likely to be needed. As a result, 
the computational effort of  solving the above formulation can be enormous, which is suggested by our preliminary 
computational experiments as well. In summary, although we can ensure symmetric solutions not to be explored in the 
branch-and-bound tree, large LP subproblems must be solved at each tree node. Furthermore, our experiments suggest that 
the computational time for our problem depends on the order of  the input data, which is similar to the past experience in 
treating ARFs for other clustering problems (Jans and Desrosiers, 2010). 
 With these unsatisfactory features, we take a direct approach by introducing the following set of  constraints to greatly 
alleviate the symmetry in (P1): 
 

1
1

1  ;                                        (22) 
1

1 1

K i
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i j
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  , 2, , 1, 2, , 1.i n k K                        (23) 

 
As in many other clustering problems, symmetric solutions are primarily due to clusterwise permutation. Note that one can 
obtain !K  symmetric solutions from clusterwise permutation of  each feasible solution, where K is the number of  clusters. 
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The above constraints force that exactly one such symmetric solution is checked in the branch-and-bound tree. To be more 
specific, constraint (22) forces subject 1 to be assigned to cluster 1 and constraints (23) restricts the smallest indexed subject 
that is unassigned to be either the first subject assigned to k if  no subjects are yet assigned to cluster k, or assigned to a 
cluster with a smaller index than k. In other words, constraints (23) ensure that such a subject cannot be assigned to a cluster 
indexed larger than k. 
 
Theorem 2 For any set of  symmetric solutions to (P1) that are caused by clusterwise permutation, there is exactly one solution from the set that 
can satisfy constraints (22) and (23). 
 
Proof  For each symmetric solution, uniquely identified by some  , we define  k

l   to be the smallest index in cluster k, 

and       1
, ,

K
L l l     to be the set that contains the smallest indices for clusters 1, , .k K   It is clear that the 

sets  L   are identical for all symmetric solutions  . Constraint (22) specifies  1
l   to be 1, and constraints (23) specify 

that    1 K
l l  . Since all the elements in  L   are unique, there is one and only one ascending order among 

 ,? , , .
i
l i K    Hence there is a unique solution   that satisfies constraints (22) and (23).        

 
Remark 1 When 2K  , only constraint (22) is required. As indicated earlier, the cardinality of  any permutation solution 
set is !K . This implies that only two solutions in each permutation solution set when 2.K   It is thus sufficient to 
specify the cluster indicator for one subject with constraint (22). 
 
4. NUMERICAL STUDIES 

In this section, we use both randomly generated data sets and real-world data sets from the literature to test our 
proposed approach. The randomly generated instances provide us with more flexibility in designing experiments and 
exploring the performance of  our algorithm in different scenarios, and solving the CLR-LSAD problems in real life further 
demonstrates the usability of  our proposed approach. We solve both randomly generated instances and real instances using 
the CPLEX MIP solver with default settings. We conduct all the computational experiments on a PC with 16GB RAM and a 
CPU of  3.0GHz. 
 
4.1  Randomly Generated Data  
 

With randomly generated data sets, we intend to investigate 1) the influences of  data set characteristics on the 
computational performance of  solving the CLR-LSAD problem directly via a standard MIP solver; and 2) the effectiveness 
of  the symmetry-breaking constraints introduced in Section 3. In particular, we considered planar subjects in all our 
experiments, i.e., 1m  . To construct a set of  subjects, we specified K regression line models, i.e., 

0 1
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   subjects had been generated. 

 For a set of  subjects ( , )k k
i i

x y , 1, ,k K   and 1, ,
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i n  , we characterized the set by counting the number of  

subjects that are one standard deviation within any other lines, i.e., a subject ( , )k k
i i

x y  is selected if  
' '

0 1
| |k k k k

i i
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for some 'k  with '1 .k k K    We term this measure the overlap count. We next constructed an instance of  the 
CLR-LSAD problem according to (P1). For each instance, we first solved (P1) and then solved the formulation with 
addition of  constraints (22) and (23) for the comparison purpose. For each instance, we reported the CPU times taken to 
solve both formulations. We also reported the overlap count of  the subject set to assess its influence on the computational 
performance.  

 In the first set of  experiments, we considered two line models that cross the origin, i.e., 
1

y a x  and 
2

y a x . We 

set y x  to be the reference line model, i.e., 
1

1a  , and varied 
2

a  to be 1.4, 1.8, 2.2, 2.6, and 3 to control the overlap 

count. We let 25
k

n   for 1,k   and generate ten instances for each test value of  
2
.a  We present our computational 

results in Table 1. The first column indicates the two line models we used to construct the CLR problem instances. Within 
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each instance group, the second row reports the percentage of  subjects that are misclassified. The last two rows report the 
CPU times (in seconds) taken to solve (P1) without and with symmetry-breaking constraints (SBCs), respectively. 

 
Table 1. Set 1 computational results. Reference line model is 

1 2
; 2; 25.y x K n n     

Model Instance no. 1 2 3 4 5 6 7 8 9 10 
 Overlap Count (%) 18 20 22 22 24 24 24 24 24 28 

 y x  Misclassified (%) 14 20 14 14 16 18 18 26 28 12 
 y x1.4  (P1) 338 2145 46 290 256 356 1022 239 973 463 

 (P1) + SBC 271 892 22 158 137 172 333 213 409 350 
 Overlap Count (%) 6 8 8 10 12 14 14 16 18 20 

 y x  Misclassified (%) 6 2 6 8 14 6 6 8 18 16 
 y x1.8  (P1) 140 15.3 30.8 55.3 25.8 7.3 9.5 14.2 49.8 17.5 

 (P1) + SBC 77.2 11.5 15.9 18.2 11.9 3.3 6.4 14.2 13.6 8.2 
 Overlap Count (%) 4 6 6 8 8 10 10 10 10 14 

 y x  Misclassified (%) 6 4 6 8 8 4 8 10 12 10 
 y x2.2  (P1) 17 37.5 12.3 9.5 10.4 6.5 30.7 2.4 6.3 6.2 

 (P1) + SBC 7.8 13.1 7.0 4.8 3.2 3.1 5.4 2.0 3.1 2.9 
 Overlap Count (%) 2 4 4 4 6 6 8 8 8 14 

 y x  Misclassified (%) 2 0 2 2 4 4 4 6 8 6 
 y x2.6  (P1) 6.9 5.3 3.1 5.6 4.3 11.7 2.2 3.4 2.3 4.5 

 (P1) + SBC 3.9 0.4 0.6 2.1 1 3.6 1.1 2.9 1.9 2.2 
 Overlap Count (%) 2 4 4 4 4 6 8 8 8 12 

 y x  Misclassified (%) 2 2 2 2 4 12 6 8 10 10 
 y x3.0  (P1) 1.4 0.8 0.9 1.6 1.6 1.0 1.8 2.6 1.7 5.6 

 (P1) + SBC 0.5 0.5 0.4 0.9 0.6 0.9 1.1 1.2 1.0 3.0 
SBC: symmetry-breaking constraints 

 
The results in Table 1 suggest that the overlap count, in general, follows the angle between the two line models. That is, 

larger angles typically lead to fewer points that are associated with one line but are close to the other line as well. 
Consequently, larger angles, on average, make the instances easier to solve, and result in fewer misclassified subjects in the 
optimal solutions. As for the computational improvement with the addition of  the symmetry-breaking constraints (see 
(20) – (21)), the results are encouraging with 2-4 times of  speed up. The speed-up ratio seems to be insensitive to the angle 
between the two line models.  

In the second set of  experiments, we considered three line models 3 4y x  , 3 4y x   , and 5 2y x  . 

We let 12
k

n   for 1,2, 3k   and generated five subject sets. We varied K to be 2, 3, and 4, and solved (P1) without and 
with the symmetry-breaking constraints, respectively. We present the computational CPU times (in seconds) for different 
numbers of  clusters and different instances in Table 2. The results in Table 2 suggest that the solution time is significantly 
affected by the number of  clusters. This observation matches our intuition as the instance size increases with the number of  
clusters. It is encouraging that the benefit of  adding the symmetry-breaking constraints seems to become more noticeable as 
the number of  clusters increases. Finally, the comparison between the two tables suggests that the speed-up ratio seems to 
increase as the number of  subjects increases.  

 
 

Table 2. Set 2 computational results. There line models are 3 4, 3 4,y x y x      and 

1 2 3
5 2; 12y x n n n     . 

 Instance no. 1 2 3 4 5 
 2K  (P1) 0.63 0.81 0.86 0.95 1.31 
 (P1) +SBC 0.40 0.17 0.31 0.80 1.14 
 3K  (P1) 3.96 3.76 2.29 22.3 2.56 
 (P1) +SBC 3.48 2.45 1.98 5.24 2.78 
  4K  (P1) 517 739 226 877 371 
 (P1) +SBC 182 465 162 291 181 
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4.2  Real Data 
 

In this section, we test our proposed approach with two real data sets obtained from the literature. The first data set 
contains the pricing details of  40 houses in a large city in the UK (Miles and Shevlin, 2001). The independent variable is the 
area of  the house in square meters, and the dependent variable is the price of  the house in thousands of  pounds. The 
second data set contains the annual salaries of  the chief  executive officers (CEOs) for 59 small firms in the US (Velleman, 
2010). The independent variable is the age of  the CEO in years, and the dependent variable is the annual salary of  the CEO 
in thousands of  dollars. We show the computational results in Figure 2 and Figure 3. 
 

 
     (a) Original data set                (b) Clustering result for K=2 

Figure 2. CLR-LSAD analysis with the MIP approach for the house price data set 
 

  
             (a) Original data set         (b) Clustering result for K=2   (c) Clustering result for K=3 

Figure 3. CLR-LSAD analysis with the MIP approach for the CEO salary data set 
 

Figure 2a is the scatter plot of  the data points for the house price data set. Our observation from the scatter plot 
indicates that some house prices increase with a higher rate than others as the house area increases. Our clustering result 
shown in Figure 2b confirms our observation and clearly indicates the two distinct linear relationships. The CPU time is 90 
seconds in this case. The CEO salary data set shown in Figure 3a does not show obvious linear relationship between the age 
and salary of  CEO. Thus, we cluster the data points with both two clusters and three clusters and present the results in 
Figure 3b and 3c, respectively. These results offer insight into the interpretation of  the relationship between the age and 
salary of  CEO. For this data set, both CPU times are within 10 minutes. 

 
5. CONCLUSIONS AND FUTURE RESEARCH 

In this paper, we investigate the mathematical programming application in CLR analysis. We introduce an MIP 
reformulation for the problem and extend the reformulation to incorporate outlier detection in CLR analysis. We introduce 
two symmetry-breaking approaches in response to computational challenges due to the solution symmetry caused by 
clusterwise permutation. For our preliminary numerical studies, we generate test instances randomly. We use these instances 
to assess the effects of  various data set characteristics on the computational performance of  solving our MIP 
reformulations directly via standard branch and bound. We also use them to verify the effectiveness of  a set of  
symmetry-breaking constraints introduced in this paper. Finally, we demonstrate the usability of  our proposed approach to 
perform clusterwise linear regression analysis for two data sets in real world.  
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A number of  research directions may be worth undertaking in the future. First, more efficient solution methods, 
including efficient heuristics, should be explored to improve the computational performance of  solving the MIP 
formulations. For example, we may consider embedding the exact solution to provide promising initial clustering for fast 
heuristics. We randomly select a subset of  subjects with manageable size, and identify an optimal set of  multiple regression 
lines by solving the reformulation with respect to the selected subset. We then associate the rest of  the subjects to the 
derived regression line that offers the least absolute deviation. This method can be used repeatedly with multiple randomly 
selected initial subsets. We may also develop effective decomposition based methods as these methods have been developed 
for a variety of  clustering analysis problems, e.g. Mulvey and Crowder (1979). Second, more comprehensive numerical 
studies should be conducted to investigate the computational performance with different data set characteristics (e.g., the 
values of  K, 

k
n ,  , etc.) and test of  effectiveness of  the symmetry-breaking constraints. We also plan to test large-scale 

real-world data sets such as those used in Carbonneau et al. (2011). 
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