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Abstract  This paper is concerned with deriving, using logistic and Markov chain theoretic methodologies, a transition 
matrix for a multi-echelon educational system. The explanatory variables of the logistic model are the school differential 
variables, and the transition matrix of the Markov chain is the non-homogeneous empirical transition matrix (NHETM). We 
compare the NHETM with the periodically updated transition matrix suggested in literature using data in a university setting. 
The results indicate that the NHETM do not violate the flow mechanism of the academic programme and that the higher-
order NHETM is not a sparse matrix.  
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1. INTRODUCTION 

The system we consider in this study is one with a set of states {0} S   , where the notation 0 denotes the state 

outside the educational system, and  1
,...,

k
S s s  is the set of levels in the educational system with the following 

features: there is a natural ordering of the states; the state { }
i

s , 1,...,i k , is a singleton set; the states of the system are 

non-overlapping; the grades are finite and exhaustive; and a student enrolled in state  is  cannot also be in state  js , 

i j , in any session t . Thereafter, we develop a transition matrix suitable for the non-homogeneous evolution of the 

educational system using the following notations:  1
( ),..., ( )

i ik
p t p t  is the log-likelihood function of the distribution of 

the system. β
1

( , , )
i i pi

  '

 
is an unknown parameter vector. ( )

ij
n t  is the number of students moving from level i  to 

level j  in period t . 
0
( )

i
n t  is the number of students leaving level i  in period t . ( )

ij
p t  is the probability of students’ flow 

from level i  to level j  in period t . 
0
( )

i
p t  is the probability of students leaving level i  in period t . 

( )
( )

i
ij t

p t 'x
 is the 

estimated probability of students’ flow from level i  to level j  given ( )
i
t'x  for period t . 

0 ( )
( )

i
i t

p t 'x
 is the estimated 

probability of students leaving level i  given ( )
i
t'x  for period t . 

0
( )

j
p t  is the estimated admission probability into level j  

in period t .  
1 ( 1) ( 1)

( ) [1 ( ) ( ) ( )]
i i h i p i
t x t x t x t 'x  

 with 
( 1)

( )
h i

x t
, 1, ,h p  , being an observation 

corresponding to the ( 1)h  th system’s differential variables in level i  in period t . 
1
( )

( )
k

t

t

 
 
   
 
  

'

'

x
x'

x

   is a k p  matrix of the 

set of differential variables of the system. 
( )

( )
t

t x'Q  is the k k  non-homogeneous empirical transition matrix (NHETM) 

of the open system given ( )tx'  for each period t . 
( )

( )
i

ij t
q t 'x

 is the entries in 
( )

( )
t

t x'Q  such that 
( ) ( )

( ) ( )
i i

ij ijt t
q t p t ' 'x x

0 0( )
( ) ( )

i
i jt

p t p t'x
 and 

( )
1

( ) 1
i

k

ij t
j

q t


 'x
.  

The states in the educational system may be either transient or absorbing. An absorbing state is a type of state in which 
upon entering the state, it is not possible to go to another state in the future. There are two absorbing states in the 
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educational system, namely: dropout and completion (or graduation) states. Dropout state encapsulates students who 
withdraw from the programme before completion. The transient state is the state where upon entering the process may 
never return to the state again. The levels in the educational system are transient states because all movements will be 
towards absorption and away from the levels. The implication of this is that the outcome of the evolution of the system can 
be viewed as a binary variable. A computationally easy approach to model such binary variables is the binomial logistic 
model (Dobson, 2002). Jimenez and Salas-Velasco (2000) had earlier employed the binomial logistic model in the study of 
the demand for higher education in Spain. In this light, we formulate the following optimization problem:  

 
OP: Maximize 

 1
1

( ),..., ( ) ( ) log ( )
k

i ik ij ij
j

p t p t n t p t


  
                                                                                                               

 (1) 

subject to:  

i. the binomial logistic model constraint: 

 

    β
1

0
1

log ( )
k

i ij i i
j

p t p t t




           
 x ' ,                                        (2a) 

ii. the stochastic property:    0
1

1
k

ij i
j

p t p t


  ,                                                                                     (2b) 

iii. the non-negativity condition:     0
0, 0

ij i
p t p t  , ,i j S .                                                            (2c) 

 
What we intend to accomplish by the formulation of problem OP is to derive a NHETM wherein the school 

differential variables are inscribed into the transition probabilities of the multi-echelon educational system in a systematic 
manner. Uche (1978) earlier suggested that, for a better description of the educational system, the transition probabilities of 
the system may depend on the amount of money voted for education or on some other non-quantifiable factors, but he did 
not attempt to do this. From the literature available to us, no author has attempted to incorporate this suggestion of Uche 
(1978). By solving problem OP, we endeavour to bridge the gap identified by Uche (1978) using school fees as a proxy for 
money voted for education as well as other school’s differential variables. The school’s differential variables include: tuition 
fees and charges per year of study, promotion criteria, and environmental factors such as land use mix, traffic zone, etc. 
School fees and other differential variables are incorporated into the transition model by assuming a binomial logistic 
wastage rate for the multi-echelon educational system. The closest rivalry to our present study is the work of Ekhosuehi 
(2009). For this reason, we shall compare our proposed NHETM with the periodic updated transition matrix (PUTM) of 
Ekhosuehi (2009). 

 
2. LITERATURE REVIEW 

In modelling students’ flows in the educational system, authors have commonly assumed a deterministic growth factor 
for new entrants (Osagiede and Omosigho, 2004; and Osagiede and Ekhosuehi, 2006). The growth factor was, hitherto, 
chosen arbitrarily by various authors until Osagiede and Ekhosuehi (2006) proffered a solution by providing a unique 
estimator for its computation. A common approach in modelling students’ flows is the use of Markov chain. The classical 
Markov chain model for the multi-echelon educational system was developed by Gani (1963). Since then other similar 
models have been used in literature (Uche, 1978; Nicholls, 2009). The classical Markov chain model which Nicholls (2009) 
called the absorbing Markov chain model has a sub-stochastic transition matrix. The N N  absorbing Markov chain with 

r  absorbing states, A  say, has a block structure of the form (Ibe, 2009): 

 
 
   
 
  

P w'
A

0 I



  



, where w  is an m r

transition matrix from nonabsorbing to absorbing states, m N r   is the nonabsorbing (or transient) states, P  is an 
m m  transition matrix among the transient states, I  is an r r  identity matrix, 0  is an r m  matrix whose entries are 
all zero and the prime in w  denotes transposition. The major limitation in the use of the absorbing Markov chain is that the 
entry probabilities are not accounted for. As a consequence, the process enters a state of absorption after some transition 
steps. This is shown as follows:  

*lim lim

lim

t
tt t

t

t

 



 
 
   
 
  

P w

A
0 I



  



,  

where * 2 1t
t

    w w' Pw' P w' P w'
. But, lim t

t
P 0  since 1P  as P  is sub-stochastic. So, 
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*lim

lim
tt

t

t





 
 
   
 
  

0 w

A
0 I



  



.  

The implication of this result is that no student would be in the system after a long period of time. This result is 
worrisome as it is expected that the educational system strives for long-term survival. Against this backdrop, Osagiede and 
Ekhosuehi (2006) proposed a homogeneous Markov chain, Q , of the form:  Q P w'r , to describe the flow 
mechanism in the educational system, where r  is the admission probability vector. We shall hereafter refer to the matrix Q  
as the homogeneous imbedded Markov chain (HIMC). The matrix Q  is stochastic as Qe' e' , where e'  is a column 
vector of ones conformable with matrix Q . Osagiede and Ekhosuehi (2006) however assumed that the HIMC is stationary. 
In practice, a transition matrix may not be stationary in the interim not until the process has evolved over time. This result 
can be shown using the chi-square test statistic on empirical data (Zanakis and Maret, 1980). In this light, Ekhosuehi (2009) 
suggested the periodic update of the transition matrix whenever it is non-stationary. Thus, the transition probabilities for 
each period t  are computed as: 

^
1

1 1

( )
( ) , 1,2, , ; ,

( )

t

ij
u

ij t k

ij
u j

n u
p t t T i j S

n u



 

  



 .                                                                                        (3) 

In a similar manner, the wastage and admission probabilities are obtained. We refer to the transition matrix arising 
from the periodic update analogous to the HIMC as the periodically updated transition matrix (PUTM).  
 
3. THE PROPOSED NON-HOMOGENEOUS EMPIRICAL TRANSITION MATRIX 

 
The problem OP is formulated on the assumptions that: 
i. the transition probabilities satisfy the multinomial distribution (Osagiede and Ekhosuehi, 2006) of the form: 

 
 

  ( )0

0 1
0

0

( ) 1

( ), ( ), , ( ) ( )

( ) 1

ij

k

ij k n tj

i i ik ijk
j

ij
j

n t

P n t n t n t p t

n t







      


 







. 
ii. the wastage probabilities vary with the differential variables of the system in a binomial logistic manner. This is 

justifiable as the educational system is made up of two main states: transient and absorbing. 
To solve OP, we let  1,2,...,S k  since  is  is a natural ordering singleton set, and consider the constraint (2a). 

We simplify constraint (2a) as follows: 

    β
1

0
1

exp( ( ) )
k

i ij i i
j

p t p t t




     
 x '                                                                                                                 (4) 

By adding one to both sides, we get:     β
1

0
1

1 1 exp( ( ) )
k

i ij i i
j

p t p t t




      
 x ' . Using the constraint (2b), we have 

  β
1

1

1 exp( ( ) )
k

ij i i
j

p t t




      
 x ' .                                                                                                                  (5) 

 
Taking the natural logarithm of both sides, we obtain 

  β
1

log log[1 exp( ( ) )]
k

ij i i
j

p t t


       
 x ' .                                                                                                      (6) 

Let  m
i

z t  be a binary random variable defined as  

 
1 if a student leaves level in session

0 if no student leaves level in session
m
i

m i t
z t

i t

 
 

with probability     0
Prob 1m

i i
z t p t   and     

1

Prob 0
k

m
i ij

j

z t p t


   , for all i S . Let  i
w t  be a 

random variable which represents the total number of wastage in level i  in session t . If  i
n t  is the total number of 
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students enrolled in level i  in session t , then    
( )

1

in t
m

i i
m

w t z t


  . Since a student may either remain or leave the 

educational system,  m
i

z t  is a binary random variable and the distribution of the random variable  i
w t  is a binomial 

distribution (Lindgren, 1993) of the form 

      
     

   0

0

0 0
10

Prob ( ) ( )
i i

i

n t n t
kn ti

i i i ij
ji

n t
w t n t p t p t

n t





              
 , for all i S , 

where  0i
n t  is the wastage flow from level i  in session t . Next, we express the distribution of the random variable 

 i
w t  as a member of the exponential family using exponential and logarithmic operators as 

      
     

   0

0

0 0
10

Prob exp log ( ) ( )
i i

i

n t n t
kn ti

i i i ij
ji

n t
w t n t p t p t

n t





                              
 . 

 
After some algebra, we obtain 

          
 

1

0 0 0
1 1 0

Prob exp log ( ) ( ) log ( ) log
k k

i
i i i i ij i ij

j j i

n t
w t n t n t p t p t n t p t

n t



 

                                        
  , 

where   

 
 

 
      0 0 0

!
log log

! !

ii

i i i i

n tn t

n t n t n t n t

       
. 

The log-likelihood function is 

     
 

1

0 0
1 1 1 0

log ( ) ( ) log ( ) log
T k k

i
i i i ij i ij

t j j i

n t
L n t p t p t n t p t

n t



  

                                       
   .                                            (7)  

 
To estimate the values of β

i
, we substitute the right hand side terms of the constraint (2a) and equation (6) into 

equation (7), so that we have 

      
 ββ

0
1 0

( ) log[1 exp( ( ) )] log
T

i
i i i i i i i

t i

n t
L n t t n t t

n t

                
 x ' x '                                                          (8) 

 
Taking the partial derivatives of (8) with respect to each element of β

i
, we have  

β

β0
11

exp( ( ) )
( ) ( )

[1 exp( ( ) )]

T
i ii

i i
ti i i

tL
n t n t

t 

          


x '

x '
, 

β

β
( 1)

0 ( 1)
1

( )exp( ( ) )
( ) ( ) ( )

[1 exp( ( ) )]

T
h i i ii

i h i i
thi i i

x t tL
n t x t n t

t





          


x '

x '
, 2, ,h p  . 

Let  β
1

i

i

i

i

pi

L

L





                  

U  .   

Our interest is to obtain a solution to the problem  β
i

U 0 , which is nonlinear in β
i
. To do this, we employ the 

iteratively reweighted least squares algorithm (Hardle et al., 2004). The method involves solving repeatedly 

 ββββ( 1) ( ) ( ) 1 ( )[ ( )] ( ), 0,1, 2, ...
i i i i

        U                                                                              (9) 
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provided β( )det [ ( )] 0
i
  , where 

ββ

β
ββ

( )

2

( )( )

i i

i

i

i i

L








 

 

 
 
 
 
 

'
 is the p p  matrix of second-order partial 

derivatives of the log-likelihood function evaluated at the  th iteration around β
i
. The matrix β( )( )

i
  is a symmetric 

matrix, and β( ) 1[ ( )]
i
   is the dispersion matrix. The iteration is started from β(0)

i
 0  and it stops when the parameter 

estimates do not change significantly any more. Let β*
i

 be the numerical solution to the system in equation (9). Then, from 

equations (4) and (5), we obtain  0i
p t  and the sum  

1

k

ij
j

p t

  as:  

ββ* 1 *

0
( ) [1 exp( ( ) )] exp( ( ) )

i i i i i
p t t t  x ' x '                                                                                                     (10) 

and  

β* 1

1

( ) [1 exp( ( ) )]
k

ij i i
j

p t t 



  x ' .                                                                                                                   (11) 

Using the result in equation (11), the objective function (1) is rewritten as  

  β
1 1

* 1
1

1 1

( ),..., ( ) ( ) log ( ) ( ) log [1 exp( ( ) )] ( )
k k

i ik ij ij ik i i ij
j j

p t p t n t p t n t t p t
 



 

         
 x ' . 

Taking the partial derivatives of  1
( ),..., ( )

i ik
p t p t  with respect to each ( )

ij
p t , / { }j S k , we obtain 

β
1

* 1

1

( ) ( )

( ) ( )
[1 exp( ( ) )] ( )

ij ik
k

ij ij
i i ij

j

n t n t

p t p t
t p t







 


 x '

, / { }j S k .  

By setting 0
( )

ij
p t





 and taking β

1
* 1

1

( ) [1 exp( ( ) )] ( )
k

ik i i ij
j

p t t p t






  x ' , from equation (11), we have  

( ) ( ) ( ) ( )
ij ik ik ij

n t p t n t p t .                                                                                                                                (12) 

Summing over all j S , we get 
1 1

( ) ( ) ( ) ( )
k k

ik ij ik ij
j j

p t n t n t p t
 

  . Using the result in equation (11), we have 

β 1*

1

( )
( ) [1 exp( ( ) )] ,

( )

ik
ik i ik

ij
j

n t
p t t i S

n t





  


x ' .                                                                                        (13) 

By substituting the result for ( )
ik

p t  in equation (13) into equation (12), we obtain 

β* 1

1

( )
( ) [1 exp( ( ) )] , , {

)

./ }

(

ij

ij i ik

ij
j

n t
p t t i S j S k

n t





   


x '                                                                    (14) 

Thus, we have for ,i j S  that  

β* 1

1

( )
( ) [1 exp( ( ) )]

( )

ij

ij i ik

ij
j

n t
p t t

n t





 


x ' .                                                                                                          (15) 

Since β*exp( ( ) )
i i

tx ' , ( )
ij

n t 0 , the non-negativity constraints (2c) are met automatically. Observe that the results in 

equation (10) and (15) are estimated from the differential variables and the enrolment stocks. Hence, we state our solution 
to OP as 

 

ββ

β

* 1 *

* 1
( )

0

[1 exp( ( ) )] exp( ( ) ), for , 0

( )
( ) [1 exp( ( ) )] , for ,

( )
i

i i i i

ij
ij t i ik

ij
j

t t i S j

n t
p t t i S j S

n t







  

   




x '

x ' x '

x '                                                      (16) 
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provided β( )det [ ( )] 0
i
  , for each 0,1,2,...  . However, if β( )det [ ( )] 0

i
  , then no information is 

contained in the differential variables. Consequently, OP is maximized without the binomial logistic constraint.  
Subsequently, we construct the NHETM expressed as:  

internal transition probabilities probability of  consequential recruitments

in the system at time t to replace losses at time t
NHETM

                 
. 

Let 
0
( )

j
p t  be the admission probability of new entrants into level j . Let:  

 ( ) ( ) ( ) ( )
1

( ) ( ) : ( ) 1, ( ) 0, ,
i i i

k

t ij t ij t ij t
j

t p t p t p t i j S


          
x' x ' x ' x 'P ,  

 ( ) 10 ( ) 0 ( ) 0 ( ) 0 ( )
1

( ) ( ) ( ) : ( ) 1, ( ) 0,
i i i i

k

t t k t i t i t
i

t p t p t p t p t i S


          
x' x ' x ' x ' x 'w  , and 

 0 01 0 0 0
1

( ) ( ) ( ) : ( ) 1, ( ) 0,
k

k j j
j

t p t p t p t p t j S


          
P  . 

Then the NHETM for session t  is obtained in matrix form as: 
( ) ( ) ( ) 0

( ) ( ) ( ) ( )
t t t

t t t t x' x' x'Q P w' P .  

 
4. APPLICATION 

 
To demonstrate the utility of the NHETMs, we use enrolment data as contained in the results approved by Senate of 

the University of Benin, Nigeria for a part-time undergraduate programme for the period 2003/2004-2008/2009 sessions. 
The data are represented in the flow matrices: 1 6F F , 1 6W W , and 1 6R R .  

0 112 0 0 0 0

0 0 53 0 0 0

0 0 0 56 0 0
1

0 0 0 0 30 0

0 0 0 0 0 35

0 0 0 0 0 8

 
 
 
 
 
   
 
 
 
 
 
 

F , 

0

0

0
1

0

0

10

 
 
 
 
 
   
 
 
 
 
 
 

W , 1 112 4 0 0 0 0    R , 

0 106 0 0 0 0

0 0 90 0 0 0

0 0 0 45 0 0
2

0 0 0 0 48 0

0 0 0 0 0 26

0 0 0 0 0 8

 
 
 
 
 
   
 
 
 
 
 
 

F , 

4

22

8
2

8

4

35

 
 
 
 
 
   
 
 
 
 
 
 

W , 2 110 0 0 0 0 0    R , 

0 234 0 0 0 0

0 0 78 0 0 0

0 0 0 87 0 0
3

0 0 0 0 45 0

0 0 0 0 0 43

0 0 0 0 0 13

 
 
 
 
 
   
 
 
 
 
 
 

F , 

2

28

3
3

0

5

21

 
 
 
 
 
   
 
 
 
 
 
 

W , 3 236 0 0 0 0 0    R , 

0 346 0 0 0 0

0 0 226 0 0 0

0 0 0 78 0 0
4

0 0 0 0 87 0

0 0 0 0 0 43

0 0 0 0 0 20

 
 
 
 
 
   
 
 
 
 
 
 

F , 

7

8

0
4

0

2

36

 
 
 
 
 
   
 
 
 
 
 
 

W , 4 353 0 0 0 0 0    R , 
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0 470 0 0 0 0

0 0 404 0 0 0

0 0 0 211 0 0
5

0 0 0 0 78 0

0 0 0 0 0 80

0 0 0 0 0 35

 
 
 
 
 
   
 
 
 
 
 
 

F , 

1

2

15
5

0

7

28

 
 
 
 
 
   
 
 
 
 
 
 

W , 5 471 180 0 0 0 0    R , 

0 179 0 0 0 0

0 0 489 0 0 0

0 0 0 397 0 0
6

0 0 0 0 205 0

0 0 0 0 0 67

0 0 0 0 0 44

 
 
 
 
 
   
 
 
 
 
 
 

F , 

2

3

7
6

6

11

71

 
 
 
 
 
   
 
 
 
 
 
 

W , 6 181 22 0 0 0 0    R . 

 
Entries in the flow matrices satisfies the flow pattern:    , 1ij i i

j

n t n t


 ,    1, , 1
1

i i i i
n t n t   , for 

\ {2,6}i S ,   0,
ji

j

n t j i


  , where  ij
n t  for each ,i j S  is the flow from level i  to level j  within the 

system during the time period ( 1 , )t t , and S  is the set of levels in the undergraduate programme. 

Among the differential variables of the programme which include tuition fees and charges, environmental factors and 
promotion criteria, only tuition fees and charges varied during the period under consideration. Thus, tuition fees and 
charges for the programme are used as an explanatory variable for the variation in wastage. The data for tuition fees and 
charges are obtained from the Bursary Department of the University (see Table 1). 

 
Table 1. Tuition fees and charges for B.Sc. in Statistics with Computer Science 

Time in 
session 

Tuition (in Naira) Charges (in Naira) Total (in Naira) 
Returning 
students 

New students Returning 
students 

New students 

2003/2004 - - - 28,700 38,900 
2004/2005 - - - 28,700 38,900 
2005/2006 20,000 8,700 24,700 28,700 44,700 
2006/2007 20,000 8,700 24,700 28,700 44,700 
2007/2008 20,000 8,700 40,500 28,700 60,500 
2008/2009 20,000 9,700 51,500 29,700 71,500 

Source: Students Services Division, Bursary Department, University of Benin, Benin City, Nigeria. 

 
By the method described in Osagiede and Ekhosuehi (2006), the HIMC is estimated from the flow matrices as: 

0.0097 0.9903 0 0 0 0

0.0398 0.0051 0.9551 0 0 0

0.0323 0.0041 0 0.9636 0 0

0.0245 0.0031 0 0 0.9724 0

0.0797 0.0101 0 0 0 0.9102

0.5420 0.0689 0 0 0 0.3891

 
 
 
 
 
   
 
 
 
 
 
 

Q . 

In matrix Q , the entries in columns 1 and 2 arise from the replacement matrix and the admission policy of the 

institution as new entrants are admitted either into Year 1 or Year 2. In particular, the (1,2)  entry is the probability that a 

student is promoted from Year 1 to Year 2 or a student is admitted into Year 2 to replace leavers in Year 1. Wherever zero 
entry occurs, it means no transition took place between the corresponding levels. The main diagonal elements of the 
transition matrices are either zero or relatively small, while the upper off-diagonal elements (‘promotion’ probabilities) are 
large. The main diagonal elements for columns 1 and 2 are small because the wastage probabilities are also very small, while 
the upper off-diagonal elements are large because a greater proportion of students are promoted. The diagonal entry in 
column 6 represents the probability of a student repeating Year 6. The block structure of the transition matrix therefore 
indicates that there is a normal progression to the next higher level and the few students who drop-out of the programme 
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are being replaced by new entrants. In sum, the entries in matrix Q  provide information on the direct transition between 

the year of study in the academic programme and the part of wastage replaced by new entrants into the programme in each 
period. 

To verify the constancy of the HIMC, we use the chi-square test statistic as in Zanakis and Maret (1980). We obtain the 
calculated chi-square value as 393.4455 . Since the number of time periods is six, the number of degrees of freedom for 

the test statistic is 150. This value (150 degrees of freedom) is large so the critical value for   percentile is computed using: 

2 21
( 2 1 ) , 30

2
z k k      , where k  is the number of degrees of freedom and z  is the corresponding 

percentile of the standard normal distribution (Lindgren, 1993). We obtain the critical value at the 5% significance level as 
2
0.95

179. 2958  . The calculated chi-square value is greater than the critical value, so we conclude that the transition 

matrix is not stationary over the period of investigation at 5% significance level. Thus, we estimate the PUTMs from the 
flow matrices as: 

0 1.0000 0 0 0 0

0 0 1.0000 0 0 0

0 0 0 1.0000 0 0
1

0 0 0 0 1.0000 0

0 0 0 0 0 1.0000

0.5364 0.0192 0 0 0 0.4444

 
 
 
 
 
   
 
 
 
 
 
 

Q ; 

0.0177 0.9823 0 0 0 0

0.1310 0.0024 0.8667 0 0 0

0.0721 0.0013 0 0.9266 0 0
2

0.0914 0.0016 0 0 0.9070 0

0.0604 0.0011 0 0 0 0.9385

0.7246 0.0131 0 0 0 0.2623

 
 
 
 
 
   
 
 
 
 
 
 

Q ; 

0.0130 0.9870 0 0 0 0

0.1829 0.0016 0.8155 0 0 0

0.0548 0.0005 0 0.9447 0 0
3

0.0605 0.0005 0 0 0.9389 0

0.0790 0.0007 0 0 0 0.9204

0.6887 0.0060 0 0 0 0.3053

 
 
 
 
 
   
 
 
 
 
 
 

Q ;  

0.0160 0.9840 0 0 0 0

0.1143 0.0006 0.8851 0 0 0

0.0395 0.0002 0 0.9603 0 0
4

0.0365 0.0002 0 0 0.9633 0

0.0693 0.0003 0 0 0 0.9304

0.6722 0.0033 0 0 0 0.3245

 
 
 
 
 
   
 
 
 
 
 
 

Q ; 

0.0097 0.9903 0 0 0 0

0.0584 0.0075 0.9341 0 0 0

0.0458 0.0059 0 0.9483 0 0
5

0.0240 0.0031 0 0 0.9730 0

0.0651 0.0083 0 0 0 0.9265

0.5386 0.0689 0 0 0 0.3925

 
 
 
 
 
   
 
 
 
 
 
 

Q ;  
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0.0097 0.9903 0 0 0 0

0.0398 0.0051 0.9551 0 0 0

0.0323 0.0041 0 0.9636 0 0
6

0.0245 0.0031 0 0 0.9724 0

0.0797 0.0101 0 0 0 0.9102

0.5420 0.0689 0 0 0 0.3891

 
 
 
 
 
   
 
 
 
 
 
 

Q . 

The PUTMs indicate that in the first period, admission was done to replace leavers in Year 6 only, while for the 
remaining periods, 2, ,6t   , admission was done to replace leavers at each year of study. Although, the PUTM provide 

information on the direct transition between the year of study in the programme and the part of wastage replaced by new 
entrants into the programme in each period by updating the existing data, yet its ‘sparse’ block structure limits its use for 
non-equidistant time epochs. 

Consider the data in Table 1. To account for the fees of new entrants into Year 2, we compute the fees paid in Year 2 
as the sum of the proportion of fees paid by new entrants and that paid by the returning students. Using the information in 
the flow matrices and Table 1, we estimate the parameters for the binomial logistic model as presented in Table 2.  
 

Table 2. Parameter estimates for the binomial logistic model 

Parameters Year 1 
( i =1) 

Year 2 
( i =2) 

Year 3 
( i =3) 

Year 4 
( i =4) 

Year 5 
( i =5) 

Year 6 
( i =6) 

*
1i

  -2.3876 10.6617 29.4068 -5.0816 -23.4219 0.4070 
*
2i

  0.0000 -0.0004 -0.0011 0.0001 0.0007 0.0000 

Source: Authors computation 
 
The results *

1
0

i
   for 1, ,6i   , indicate that the link function for wastage rate is partly constant. For *

2
0

i
   

( 2, 3i  ) there is an inverse relationship between the link function and the tuition fees and charges; and there is a direct 

relationship for *
2

0
i

   ( 4,5i  ). *
2

0
i

   ( 1,6i  ) implies the absence of a relationship. Nonetheless, we compute the 

wastage probabilities using the estimator in equation (16). By coding the sessions 2003 / 2004t  , ,2008 / 2009  as 

1, ,6t   , and using the parameter estimates of the logistic model, we estimate the wastage probabilities as shown in 

Table 3.  
 

Table 3. Estimates of wastage probabilities for the NHETM 
1 2 3 4 5 6 

Year 1 0.0185 0.0185 0.0158 0.0158 0.0102 0.0075 
Year 2 0.0746 0.0920 0.0920 0.0920 0.0025 0.0415 
Year 3 0.0518 0.0518 0.0518 0.0518 0.0518 0.0186 
Year 4 0.0276 0.0276 0.0276 0.0276 0.0276 0.0289 
Year 5 0.0735 0.0735 0.0735 0.0735 0.0735 0.1410 
Year 6 0.5556 0.8140 0.6176 0.6429 0.4444 0.6174 

Source: Authors computation. 
 
Similarly, we obtain the transition probabilities. Accordingly, we estimate the NHETMs for each of the six-year period 

as: 

(1)

0.0179 0.9821 0. 0 0 0

0.0720 0.0026 0.9254 0 0 0

0.0500 0.0018 0 0.9482 0 0
(1)

0.0266 0.0010 0 0 0.9724 0

0.0710 0.0025 0 0 0 0.9265

0.5866 0.0209 0 0 0 0.3925

 
 
 
 
 
   
 
 
 
 
 
 

x'Q ,  
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(2)

0.0185 0.9815 0 0 0 0

0.0920 0 0.9080 0 0 0

0.0518 0 0 0.9482 0 0
(2)

0.0276 0 0 0 0.9724 0

0.0735 0 0 0 0 0.9265

0.6075 0 0 0 0 0.3925

 
 
 
 
 
   
 
 
 
 
 
 

x'Q , 

(3)

0.0158 0.9842 0. 0 0 0

0.0920 0 0.9080 0 0 0

0.0518 0 0 0.9482 0 0
(3)

0.0276 0 0 0 0.9724 0

0.0735 0 0 0 0 0.9265

0.6075 0 0 0 0 0.3925

 
 
 
 
 
   
 
 
 
 
 
 

x'Q ,  

(4)

0.0185 0.9815 0 0 0 0

0.0920 0 0.9080 0 0 0

0.0518 0 0 0.9482 0 0
(4)

0.0276 0 0 0 0.9724 0

0.0735 0 0 0 0 0.9265

0.6075 0 0 0 0 0.3925

 
 
 
 
 
   
 
 
 
 
 
 

x'Q , 

(5)

0.0076 0.9924 0. 0 0 0

0.0019 0.0006 0.9975 0 0 0

0.0387 0.0131 0 0.9482 0 0
(5)

0.0206 0.0070 0 0 0.9724 0

0.0549 0.0186 0 0 0 0.9265

0.4535 0.1540 0 0 0 0.3925

 
 
 
 
 
   
 
 
 
 
 
 

x'Q ,  

(6)

0.0067 0.9933 0 0 0 0

0.0370 0.0045 0.9585 0 0 0

0.0166 0.0020 0 0.9814 0 0
(6)

0.0258 0.0031 0 0 0.9711 0

0.1257 0.0153 0 0 0 0.8590

0.5505 0.0669 0 0 0 0.3826

 
 
 
 
 
   
 
 
 
 
 
 

x'Q . 

The entries in column j , 1,2j  , of 
( )

( )  x'Q , 1, ,6   , provide information on the probability that losses in 

the system would result to a consequential admission into Year j . The upper off-diagonal entries in column j , 2 6j  , 
give information on the promotion probabilities, while the diagonal entry in column 6 provides information on the 
repetition rates. Unlike the PUTMs, the NHETMs reflect the period of no direct entry admission into the programme as in 
the flow matrices. More so, the six-step higher-order transition matrices obtained as 

6

( )
1

0.4262 0.1003 0.0474 0.0474 0.0746 0.3041

0.1905 0.3826 0.1854 0.0305 0.0407 0.1703

0.1024 0.1693 0.5495 0.0701 0.0224 0.0862
( )

0.0535 0.0747 0.2418 0.5308 0.0593 0.0399

0.0429 0.0527 0.1530 0.2277 0.4644 0.0593

0.086







 x'Q

5 0.0419 0.0951 0.1460 0.2067 0.4238

 
 
 
 
 
 
 
 
 
 
 
 
 

,  

removes ‘sparsity’ from the higher-order form of the NHETM. Since the higher-order form of the PUTM is sparse, it 
cannot be imbedded in continuous-time (Singer and Spilermann, 1976), whereas the higher-order NHETM can be 
imbedded in continuous-time. Therefore, the NHETM can be used for long-term projection for any time horizons. In this 
regard, the trauma that would have emanated from modifying a transition model so as to accommodate unequal time 
epochs (arising from distortions to a proposed academic calendar of the educational system) are ameliorated as a stationary 
continuous-time transition matrix can now be obtained from the NHETM using any appropriate regularization techniques 
(Kreinin and Sidelnikova, 2001).  
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5. CONCLUSION 

 
In this study, we propose the NHETM with a binomial logistic wastage rate for the multi-echelon educational system. 

The estimators for the parameters of the NHETM wherein the school’s differential variables are inscribed are novel to the 
Markovian evaluation of the educational system. Using datasets from a university programme, we illustrate the estimation of 
the NHETMs vis-a-vis the HIMC and the PUTM. The merits of using the NHETM over other existing Markov chains for 
enrolment projection have been highlighted to include the imbedding potentials with a view to making probabilistic 
statements about the future structure of the system for any time horizons. The practical implication of estimating the 
NHETM is the collection of new data on the school’s differential variables. 
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